This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divadddiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + ( B / D ) ) = ( ( ( A x. D ) + ( B x. C ) ) / ( C x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( A e. CC /\ D e. CC ) -> ( A x. D ) e. CC ) |
|
| 2 | 1 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( A x. D ) e. CC ) |
| 3 | 2 | adantrl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. D ) e. CC ) |
| 4 | mulcl | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) e. CC ) |
|
| 5 | 4 | adantrr | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) e. CC ) |
| 6 | 5 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) e. CC ) |
| 7 | mulcl | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) e. CC ) |
|
| 8 | 7 | ad2ant2r | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
| 9 | mulne0 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
|
| 10 | 8 9 | jca | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
| 11 | 10 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
| 12 | divdir | |- ( ( ( A x. D ) e. CC /\ ( B x. C ) e. CC /\ ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) -> ( ( ( A x. D ) + ( B x. C ) ) / ( C x. D ) ) = ( ( ( A x. D ) / ( C x. D ) ) + ( ( B x. C ) / ( C x. D ) ) ) ) |
|
| 13 | 3 6 11 12 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A x. D ) + ( B x. C ) ) / ( C x. D ) ) = ( ( ( A x. D ) / ( C x. D ) ) + ( ( B x. C ) / ( C x. D ) ) ) ) |
| 14 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> A e. CC ) |
|
| 15 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D e. CC /\ D =/= 0 ) ) |
|
| 16 | 15 | simpld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
| 17 | 14 16 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. D ) = ( D x. A ) ) |
| 18 | simprll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
|
| 19 | 18 16 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
| 20 | 17 19 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) / ( C x. D ) ) = ( ( D x. A ) / ( D x. C ) ) ) |
| 21 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C e. CC /\ C =/= 0 ) ) |
|
| 22 | divcan5 | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( D x. A ) / ( D x. C ) ) = ( A / C ) ) |
|
| 23 | 14 21 15 22 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D x. A ) / ( D x. C ) ) = ( A / C ) ) |
| 24 | 20 23 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) / ( C x. D ) ) = ( A / C ) ) |
| 25 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B e. CC ) |
|
| 26 | 25 18 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) = ( C x. B ) ) |
| 27 | 26 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B x. C ) / ( C x. D ) ) = ( ( C x. B ) / ( C x. D ) ) ) |
| 28 | divcan5 | |- ( ( B e. CC /\ ( D e. CC /\ D =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / ( C x. D ) ) = ( B / D ) ) |
|
| 29 | 25 15 21 28 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. B ) / ( C x. D ) ) = ( B / D ) ) |
| 30 | 27 29 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B x. C ) / ( C x. D ) ) = ( B / D ) ) |
| 31 | 24 30 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A x. D ) / ( C x. D ) ) + ( ( B x. C ) / ( C x. D ) ) ) = ( ( A / C ) + ( B / D ) ) ) |
| 32 | 13 31 | eqtr2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + ( B / D ) ) = ( ( ( A x. D ) + ( B x. C ) ) / ( C x. D ) ) ) |