This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divsubdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | divadddiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) | |
| 3 | 1 2 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐵 ∈ ℂ ) | |
| 5 | simprrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐷 ∈ ℂ ) | |
| 6 | simprrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐷 ≠ 0 ) | |
| 7 | divneg | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → - ( 𝐵 / 𝐷 ) = ( - 𝐵 / 𝐷 ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → - ( 𝐵 / 𝐷 ) = ( - 𝐵 / 𝐷 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐷 ) ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐷 ) ) ) |
| 10 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐴 ∈ ℂ ) | |
| 11 | simprll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐶 ∈ ℂ ) | |
| 12 | simprlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐶 ≠ 0 ) | |
| 13 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 15 | divcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( 𝐵 / 𝐷 ) ∈ ℂ ) | |
| 16 | 4 5 6 15 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐵 / 𝐷 ) ∈ ℂ ) |
| 17 | 14 16 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐷 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐷 ) ) ) |
| 18 | 9 17 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐷 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐷 ) ) ) |
| 19 | 3 18 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐷 ) ) ) |
| 20 | 4 11 | mulneg1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( - 𝐵 · 𝐶 ) = - ( 𝐵 · 𝐶 ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) + - ( 𝐵 · 𝐶 ) ) ) |
| 22 | 10 5 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 23 | 4 11 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 24 | 22 23 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐷 ) + - ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ) |
| 25 | 21 24 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( - 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) |
| 27 | 19 26 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) |