This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| isdivrng1.2 | |- H = ( 2nd ` R ) |
||
| isdivrng1.3 | |- Z = ( GId ` G ) |
||
| isdivrng1.4 | |- X = ran G |
||
| Assertion | divrngcl | |- ( ( R e. DivRingOps /\ A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A H B ) e. ( X \ { Z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| 2 | isdivrng1.2 | |- H = ( 2nd ` R ) |
|
| 3 | isdivrng1.3 | |- Z = ( GId ` G ) |
|
| 4 | isdivrng1.4 | |- X = ran G |
|
| 5 | 1 2 3 4 | isdrngo1 | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
| 6 | ovres | |- ( ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) = ( A H B ) ) |
|
| 7 | 6 | adantl | |- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) = ( A H B ) ) |
| 8 | eqid | |- ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
|
| 9 | 8 | grpocl | |- ( ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp /\ A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
| 10 | 9 | 3expib | |- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) ) |
| 11 | 10 | adantl | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) ) |
| 12 | grporndm | |- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
|
| 13 | 12 | adantl | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) |
| 14 | difss | |- ( X \ { Z } ) C_ X |
|
| 15 | xpss12 | |- ( ( ( X \ { Z } ) C_ X /\ ( X \ { Z } ) C_ X ) -> ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ ( X X. X ) ) |
|
| 16 | 14 14 15 | mp2an | |- ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ ( X X. X ) |
| 17 | 1 2 4 | rngosm | |- ( R e. RingOps -> H : ( X X. X ) --> X ) |
| 18 | 17 | fdmd | |- ( R e. RingOps -> dom H = ( X X. X ) ) |
| 19 | 16 18 | sseqtrrid | |- ( R e. RingOps -> ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ dom H ) |
| 20 | ssdmres | |- ( ( ( X \ { Z } ) X. ( X \ { Z } ) ) C_ dom H <-> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
|
| 21 | 19 20 | sylib | |- ( R e. RingOps -> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
| 22 | 21 | adantr | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
| 23 | 22 | dmeqd | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = dom ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) |
| 24 | dmxpid | |- dom ( ( X \ { Z } ) X. ( X \ { Z } ) ) = ( X \ { Z } ) |
|
| 25 | 23 24 | eqtrdi | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> dom dom ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( X \ { Z } ) ) |
| 26 | 13 25 | eqtrd | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( X \ { Z } ) ) |
| 27 | 26 | eleq2d | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> A e. ( X \ { Z } ) ) ) |
| 28 | 26 | eleq2d | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> B e. ( X \ { Z } ) ) ) |
| 29 | 27 28 | anbi12d | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) /\ B e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) ) <-> ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) ) |
| 30 | 26 | eleq2d | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ran ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) <-> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) ) |
| 31 | 11 29 30 | 3imtr3d | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> ( ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) ) |
| 32 | 31 | imp | |- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) B ) e. ( X \ { Z } ) ) |
| 33 | 7 32 | eqeltrrd | |- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ ( A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) ) -> ( A H B ) e. ( X \ { Z } ) ) |
| 34 | 33 | 3impb | |- ( ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) /\ A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A H B ) e. ( X \ { Z } ) ) |
| 35 | 5 34 | syl3an1b | |- ( ( R e. DivRingOps /\ A e. ( X \ { Z } ) /\ B e. ( X \ { Z } ) ) -> ( A H B ) e. ( X \ { Z } ) ) |