This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| isdivrng1.2 | |- H = ( 2nd ` R ) |
||
| isdivrng1.3 | |- Z = ( GId ` G ) |
||
| isdivrng1.4 | |- X = ran G |
||
| Assertion | isdrngo1 | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdivrng1.1 | |- G = ( 1st ` R ) |
|
| 2 | isdivrng1.2 | |- H = ( 2nd ` R ) |
|
| 3 | isdivrng1.3 | |- Z = ( GId ` G ) |
|
| 4 | isdivrng1.4 | |- X = ran G |
|
| 5 | df-drngo | |- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
|
| 6 | 5 | relopabiv | |- Rel DivRingOps |
| 7 | 1st2nd | |- ( ( Rel DivRingOps /\ R e. DivRingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
|
| 8 | 6 7 | mpan | |- ( R e. DivRingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 9 | relrngo | |- Rel RingOps |
|
| 10 | 1st2nd | |- ( ( Rel RingOps /\ R e. RingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
|
| 11 | 9 10 | mpan | |- ( R e. RingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 12 | 11 | adantr | |- ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 13 | 1 2 | opeq12i | |- <. G , H >. = <. ( 1st ` R ) , ( 2nd ` R ) >. |
| 14 | 13 | eqeq2i | |- ( R = <. G , H >. <-> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 15 | 2 | fvexi | |- H e. _V |
| 16 | isdivrngo | |- ( H e. _V -> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) ) |
|
| 17 | 15 16 | ax-mp | |- ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 18 | 3 | sneqi | |- { Z } = { ( GId ` G ) } |
| 19 | 4 18 | difeq12i | |- ( X \ { Z } ) = ( ran G \ { ( GId ` G ) } ) |
| 20 | 19 19 | xpeq12i | |- ( ( X \ { Z } ) X. ( X \ { Z } ) ) = ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) |
| 21 | 20 | reseq2i | |- ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) = ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) |
| 22 | 21 | eleq1i | |- ( ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp <-> ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) |
| 23 | 22 | anbi2i | |- ( ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( ran G \ { ( GId ` G ) } ) X. ( ran G \ { ( GId ` G ) } ) ) ) e. GrpOp ) ) |
| 24 | 17 23 | bitr4i | |- ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
| 25 | eleq1 | |- ( R = <. G , H >. -> ( R e. DivRingOps <-> <. G , H >. e. DivRingOps ) ) |
|
| 26 | eleq1 | |- ( R = <. G , H >. -> ( R e. RingOps <-> <. G , H >. e. RingOps ) ) |
|
| 27 | 26 | anbi1d | |- ( R = <. G , H >. -> ( ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 28 | 25 27 | bibi12d | |- ( R = <. G , H >. -> ( ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) <-> ( <. G , H >. e. DivRingOps <-> ( <. G , H >. e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) ) |
| 29 | 24 28 | mpbiri | |- ( R = <. G , H >. -> ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 30 | 14 29 | sylbir | |- ( R = <. ( 1st ` R ) , ( 2nd ` R ) >. -> ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) ) |
| 31 | 8 12 30 | pm5.21nii | |- ( R e. DivRingOps <-> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |