This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdivrng1.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| isdivrng1.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| isdivrng1.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| isdivrng1.4 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | divrngcl | ⊢ ( ( 𝑅 ∈ DivRingOps ∧ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdivrng1.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | isdivrng1.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | isdivrng1.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 4 | isdivrng1.4 | ⊢ 𝑋 = ran 𝐺 | |
| 5 | 1 2 3 4 | isdrngo1 | ⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
| 6 | ovres | ⊢ ( ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) = ( 𝐴 𝐻 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) = ( 𝐴 𝐻 𝐵 ) ) |
| 8 | eqid | ⊢ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) | |
| 9 | 8 | grpocl | ⊢ ( ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ∧ 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 10 | 9 | 3expib | ⊢ ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ) |
| 12 | grporndm | ⊢ ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 14 | difss | ⊢ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 | |
| 15 | xpss12 | ⊢ ( ( ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ∧ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 16 | 14 14 15 | mp2an | ⊢ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ ( 𝑋 × 𝑋 ) |
| 17 | 1 2 4 | rngosm | ⊢ ( 𝑅 ∈ RingOps → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 18 | 17 | fdmd | ⊢ ( 𝑅 ∈ RingOps → dom 𝐻 = ( 𝑋 × 𝑋 ) ) |
| 19 | 16 18 | sseqtrrid | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ dom 𝐻 ) |
| 20 | ssdmres | ⊢ ( ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ dom 𝐻 ↔ dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝑅 ∈ RingOps → dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 23 | 22 | dmeqd | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 24 | dmxpid | ⊢ dom ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) = ( 𝑋 ∖ { 𝑍 } ) | |
| 25 | 23 24 | eqtrdi | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( 𝑋 ∖ { 𝑍 } ) ) |
| 26 | 13 25 | eqtrd | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( 𝑋 ∖ { 𝑍 } ) ) |
| 27 | 26 | eleq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 28 | 26 | eleq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 29 | 27 28 | anbi12d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ↔ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 30 | 26 | eleq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 31 | 11 29 30 | 3imtr3d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
| 33 | 7 32 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
| 34 | 33 | 3impb | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
| 35 | 5 34 | syl3an1b | ⊢ ( ( 𝑅 ∈ DivRingOps ∧ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |