This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmulasscom | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmulass | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) ) | |
| 2 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 7 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 9 | 8 | anim1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) |
| 10 | 3anass | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ↔ ( 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 12 | divcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( 𝐶 / 𝐷 ) ∈ ℂ ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 / 𝐷 ) ∈ ℂ ) |
| 14 | 6 7 13 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) = ( 𝐵 · ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) ) |
| 15 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐶 ∈ ℂ ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) | |
| 17 | divass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐷 ) = ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) | |
| 18 | 7 15 16 17 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐷 ) = ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) |
| 19 | 18 | eqcomd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 · ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |
| 21 | 14 20 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |
| 22 | 1 5 21 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |