This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division and multiplication. (Contributed by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmulass | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( ( A x. B ) x. ( C / D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> A e. CC ) |
|
| 2 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> B e. CC ) |
|
| 3 | simpr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( D e. CC /\ D =/= 0 ) ) |
|
| 4 | divass | |- ( ( A e. CC /\ B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. B ) / D ) = ( A x. ( B / D ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. B ) / D ) = ( A x. ( B / D ) ) ) |
| 6 | 5 | eqcomd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( A x. ( B / D ) ) = ( ( A x. B ) / D ) ) |
| 7 | 6 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( ( ( A x. B ) / D ) x. C ) ) |
| 8 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 9 | 8 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) |
| 10 | 9 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( A x. B ) e. CC ) |
| 11 | simpl3 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> C e. CC ) |
|
| 12 | div32 | |- ( ( ( A x. B ) e. CC /\ ( D e. CC /\ D =/= 0 ) /\ C e. CC ) -> ( ( ( A x. B ) / D ) x. C ) = ( ( A x. B ) x. ( C / D ) ) ) |
|
| 13 | 10 3 11 12 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( ( A x. B ) / D ) x. C ) = ( ( A x. B ) x. ( C / D ) ) ) |
| 14 | 7 13 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( ( A x. B ) x. ( C / D ) ) ) |