This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division by a fraction. (Contributed by NM, 27-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdiv2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / ( B / C ) ) = ( ( A x. C ) / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ax-1ne0 | |- 1 =/= 0 |
|
| 3 | 1 2 | pm3.2i | |- ( 1 e. CC /\ 1 =/= 0 ) |
| 4 | divdivdiv | |- ( ( ( A e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
|
| 5 | 3 4 | mpanl2 | |- ( ( A e. CC /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
| 6 | 5 | 3impb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
| 7 | div1 | |- ( A e. CC -> ( A / 1 ) = A ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / 1 ) = A ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( A / ( B / C ) ) ) |
| 10 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 11 | 10 | ad2antrl | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. B ) = B ) |
| 12 | 11 | 3adant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 1 x. B ) = B ) |
| 13 | 12 | oveq2d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) / ( 1 x. B ) ) = ( ( A x. C ) / B ) ) |
| 14 | 6 9 13 | 3eqtr3d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / ( B / C ) ) = ( ( A x. C ) / B ) ) |