This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptcof.1 | |- ( ph -> A. x e. A R e. B ) |
|
| fmptcof.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
||
| fmptcof.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
||
| Assertion | fmptcos | |- ( ph -> ( G o. F ) = ( x e. A |-> [_ R / y ]_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 | |- ( ph -> A. x e. A R e. B ) |
|
| 2 | fmptcof.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
|
| 3 | fmptcof.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
|
| 4 | nfcv | |- F/_ z S |
|
| 5 | nfcsb1v | |- F/_ y [_ z / y ]_ S |
|
| 6 | csbeq1a | |- ( y = z -> S = [_ z / y ]_ S ) |
|
| 7 | 4 5 6 | cbvmpt | |- ( y e. B |-> S ) = ( z e. B |-> [_ z / y ]_ S ) |
| 8 | 3 7 | eqtrdi | |- ( ph -> G = ( z e. B |-> [_ z / y ]_ S ) ) |
| 9 | csbeq1 | |- ( z = R -> [_ z / y ]_ S = [_ R / y ]_ S ) |
|
| 10 | 1 2 8 9 | fmptcof | |- ( ph -> ( G o. F ) = ( x e. A |-> [_ R / y ]_ S ) ) |