This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ditgsplit . (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgsplit.x | |- ( ph -> X e. RR ) |
|
| ditgsplit.y | |- ( ph -> Y e. RR ) |
||
| ditgsplit.a | |- ( ph -> A e. ( X [,] Y ) ) |
||
| ditgsplit.b | |- ( ph -> B e. ( X [,] Y ) ) |
||
| ditgsplit.c | |- ( ph -> C e. ( X [,] Y ) ) |
||
| ditgsplit.d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
||
| ditgsplit.i | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
||
| ditgsplit.1 | |- ( ( ps /\ th ) <-> ( A <_ B /\ B <_ C ) ) |
||
| Assertion | ditgsplitlem | |- ( ( ( ph /\ ps ) /\ th ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgsplit.x | |- ( ph -> X e. RR ) |
|
| 2 | ditgsplit.y | |- ( ph -> Y e. RR ) |
|
| 3 | ditgsplit.a | |- ( ph -> A e. ( X [,] Y ) ) |
|
| 4 | ditgsplit.b | |- ( ph -> B e. ( X [,] Y ) ) |
|
| 5 | ditgsplit.c | |- ( ph -> C e. ( X [,] Y ) ) |
|
| 6 | ditgsplit.d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
|
| 7 | ditgsplit.i | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
|
| 8 | ditgsplit.1 | |- ( ( ps /\ th ) <-> ( A <_ B /\ B <_ C ) ) |
|
| 9 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 11 | 3 10 | mpbid | |- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
| 12 | 11 | simp1d | |- ( ph -> A e. RR ) |
| 13 | 12 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> A e. RR ) |
| 14 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
|
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
| 16 | 5 15 | mpbid | |- ( ph -> ( C e. RR /\ X <_ C /\ C <_ Y ) ) |
| 17 | 16 | simp1d | |- ( ph -> C e. RR ) |
| 18 | 17 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> C e. RR ) |
| 19 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
|
| 20 | 1 2 19 | syl2anc | |- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 21 | 4 20 | mpbid | |- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
| 22 | 21 | simp1d | |- ( ph -> B e. RR ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> B e. RR ) |
| 24 | simpr | |- ( ( ph /\ ( ps /\ th ) ) -> ( ps /\ th ) ) |
|
| 25 | 24 8 | sylib | |- ( ( ph /\ ( ps /\ th ) ) -> ( A <_ B /\ B <_ C ) ) |
| 26 | 25 | simpld | |- ( ( ph /\ ( ps /\ th ) ) -> A <_ B ) |
| 27 | 25 | simprd | |- ( ( ph /\ ( ps /\ th ) ) -> B <_ C ) |
| 28 | elicc2 | |- ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
|
| 29 | 12 17 28 | syl2anc | |- ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 31 | 23 26 27 30 | mpbir3and | |- ( ( ph /\ ( ps /\ th ) ) -> B e. ( A [,] C ) ) |
| 32 | 1 | rexrd | |- ( ph -> X e. RR* ) |
| 33 | 11 | simp2d | |- ( ph -> X <_ A ) |
| 34 | iooss1 | |- ( ( X e. RR* /\ X <_ A ) -> ( A (,) C ) C_ ( X (,) C ) ) |
|
| 35 | 32 33 34 | syl2anc | |- ( ph -> ( A (,) C ) C_ ( X (,) C ) ) |
| 36 | 2 | rexrd | |- ( ph -> Y e. RR* ) |
| 37 | 16 | simp3d | |- ( ph -> C <_ Y ) |
| 38 | iooss2 | |- ( ( Y e. RR* /\ C <_ Y ) -> ( X (,) C ) C_ ( X (,) Y ) ) |
|
| 39 | 36 37 38 | syl2anc | |- ( ph -> ( X (,) C ) C_ ( X (,) Y ) ) |
| 40 | 35 39 | sstrd | |- ( ph -> ( A (,) C ) C_ ( X (,) Y ) ) |
| 41 | 40 | sselda | |- ( ( ph /\ x e. ( A (,) C ) ) -> x e. ( X (,) Y ) ) |
| 42 | iblmbf | |- ( ( x e. ( X (,) Y ) |-> D ) e. L^1 -> ( x e. ( X (,) Y ) |-> D ) e. MblFn ) |
|
| 43 | 7 42 | syl | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. MblFn ) |
| 44 | 43 6 | mbfmptcl | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. CC ) |
| 45 | 41 44 | syldan | |- ( ( ph /\ x e. ( A (,) C ) ) -> D e. CC ) |
| 46 | 45 | adantlr | |- ( ( ( ph /\ ( ps /\ th ) ) /\ x e. ( A (,) C ) ) -> D e. CC ) |
| 47 | iooss1 | |- ( ( X e. RR* /\ X <_ A ) -> ( A (,) B ) C_ ( X (,) B ) ) |
|
| 48 | 32 33 47 | syl2anc | |- ( ph -> ( A (,) B ) C_ ( X (,) B ) ) |
| 49 | 21 | simp3d | |- ( ph -> B <_ Y ) |
| 50 | iooss2 | |- ( ( Y e. RR* /\ B <_ Y ) -> ( X (,) B ) C_ ( X (,) Y ) ) |
|
| 51 | 36 49 50 | syl2anc | |- ( ph -> ( X (,) B ) C_ ( X (,) Y ) ) |
| 52 | 48 51 | sstrd | |- ( ph -> ( A (,) B ) C_ ( X (,) Y ) ) |
| 53 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 54 | 53 | a1i | |- ( ph -> ( A (,) B ) e. dom vol ) |
| 55 | 52 54 6 7 | iblss | |- ( ph -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) |
| 57 | 21 | simp2d | |- ( ph -> X <_ B ) |
| 58 | iooss1 | |- ( ( X e. RR* /\ X <_ B ) -> ( B (,) C ) C_ ( X (,) C ) ) |
|
| 59 | 32 57 58 | syl2anc | |- ( ph -> ( B (,) C ) C_ ( X (,) C ) ) |
| 60 | 59 39 | sstrd | |- ( ph -> ( B (,) C ) C_ ( X (,) Y ) ) |
| 61 | ioombl | |- ( B (,) C ) e. dom vol |
|
| 62 | 61 | a1i | |- ( ph -> ( B (,) C ) e. dom vol ) |
| 63 | 60 62 6 7 | iblss | |- ( ph -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) |
| 64 | 63 | adantr | |- ( ( ph /\ ( ps /\ th ) ) -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) |
| 65 | 13 18 31 46 56 64 | itgsplitioo | |- ( ( ph /\ ( ps /\ th ) ) -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 66 | 13 23 18 26 27 | letrd | |- ( ( ph /\ ( ps /\ th ) ) -> A <_ C ) |
| 67 | 66 | ditgpos | |- ( ( ph /\ ( ps /\ th ) ) -> S_ [ A -> C ] D _d x = S. ( A (,) C ) D _d x ) |
| 68 | 26 | ditgpos | |- ( ( ph /\ ( ps /\ th ) ) -> S_ [ A -> B ] D _d x = S. ( A (,) B ) D _d x ) |
| 69 | 27 | ditgpos | |- ( ( ph /\ ( ps /\ th ) ) -> S_ [ B -> C ] D _d x = S. ( B (,) C ) D _d x ) |
| 70 | 68 69 | oveq12d | |- ( ( ph /\ ( ps /\ th ) ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |
| 71 | 65 67 70 | 3eqtr4d | |- ( ( ph /\ ( ps /\ th ) ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 72 | 71 | anassrs | |- ( ( ( ph /\ ps ) /\ th ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |