This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc , there is no constraint on the ordering of the points A , B , C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgsplit.x | |- ( ph -> X e. RR ) |
|
| ditgsplit.y | |- ( ph -> Y e. RR ) |
||
| ditgsplit.a | |- ( ph -> A e. ( X [,] Y ) ) |
||
| ditgsplit.b | |- ( ph -> B e. ( X [,] Y ) ) |
||
| ditgsplit.c | |- ( ph -> C e. ( X [,] Y ) ) |
||
| ditgsplit.d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
||
| ditgsplit.i | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
||
| Assertion | ditgsplit | |- ( ph -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgsplit.x | |- ( ph -> X e. RR ) |
|
| 2 | ditgsplit.y | |- ( ph -> Y e. RR ) |
|
| 3 | ditgsplit.a | |- ( ph -> A e. ( X [,] Y ) ) |
|
| 4 | ditgsplit.b | |- ( ph -> B e. ( X [,] Y ) ) |
|
| 5 | ditgsplit.c | |- ( ph -> C e. ( X [,] Y ) ) |
|
| 6 | ditgsplit.d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
|
| 7 | ditgsplit.i | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
|
| 8 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 10 | 3 9 | mpbid | |- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
| 11 | 10 | simp1d | |- ( ph -> A e. RR ) |
| 12 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
|
| 13 | 1 2 12 | syl2anc | |- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 14 | 4 13 | mpbid | |- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
| 15 | 14 | simp1d | |- ( ph -> B e. RR ) |
| 16 | 11 | adantr | |- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 17 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
|
| 18 | 1 2 17 | syl2anc | |- ( ph -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
| 19 | 5 18 | mpbid | |- ( ph -> ( C e. RR /\ X <_ C /\ C <_ Y ) ) |
| 20 | 19 | simp1d | |- ( ph -> C e. RR ) |
| 21 | 20 | adantr | |- ( ( ph /\ A <_ B ) -> C e. RR ) |
| 22 | 15 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> B e. RR ) |
| 23 | 20 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> C e. RR ) |
| 24 | biid | |- ( ( A <_ B /\ B <_ C ) <-> ( A <_ B /\ B <_ C ) ) |
|
| 25 | 1 2 3 4 5 6 7 24 | ditgsplitlem | |- ( ( ( ph /\ A <_ B ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 26 | 25 | adantlr | |- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 27 | biid | |- ( ( A <_ C /\ C <_ B ) <-> ( A <_ C /\ C <_ B ) ) |
|
| 28 | 1 2 3 5 4 6 7 27 | ditgsplitlem | |- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
| 29 | 28 | oveq1d | |- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
| 30 | 1 2 3 5 6 7 | ditgcl | |- ( ph -> S_ [ A -> C ] D _d x e. CC ) |
| 31 | 1 2 5 4 6 7 | ditgcl | |- ( ph -> S_ [ C -> B ] D _d x e. CC ) |
| 32 | 1 2 4 5 6 7 | ditgcl | |- ( ph -> S_ [ B -> C ] D _d x e. CC ) |
| 33 | 30 31 32 | addassd | |- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) ) |
| 34 | 1 2 5 4 6 7 | ditgswap | |- ( ph -> S_ [ B -> C ] D _d x = -u S_ [ C -> B ] D _d x ) |
| 35 | 34 | oveq2d | |- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) ) |
| 36 | 31 | negidd | |- ( ph -> ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) = 0 ) |
| 37 | 35 36 | eqtrd | |- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = 0 ) |
| 38 | 37 | oveq2d | |- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) = ( S_ [ A -> C ] D _d x + 0 ) ) |
| 39 | 30 | addridd | |- ( ph -> ( S_ [ A -> C ] D _d x + 0 ) = S_ [ A -> C ] D _d x ) |
| 40 | 33 38 39 | 3eqtrd | |- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 41 | 40 | ad2antrr | |- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 42 | 29 41 | eqtr2d | |- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 43 | 42 | adantllr | |- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 44 | 22 23 26 43 | lecasei | |- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 45 | 40 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 46 | ancom | |- ( ( A <_ B /\ C <_ A ) <-> ( C <_ A /\ A <_ B ) ) |
|
| 47 | 1 2 5 3 4 6 7 46 | ditgsplitlem | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
| 48 | 47 | oveq2d | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 49 | 1 2 3 5 6 7 | ditgswap | |- ( ph -> S_ [ C -> A ] D _d x = -u S_ [ A -> C ] D _d x ) |
| 50 | 49 | oveq2d | |- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) ) |
| 51 | 30 | negidd | |- ( ph -> ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) = 0 ) |
| 52 | 50 51 | eqtrd | |- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = 0 ) |
| 53 | 52 | oveq1d | |- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( 0 + S_ [ A -> B ] D _d x ) ) |
| 54 | 1 2 5 3 6 7 | ditgcl | |- ( ph -> S_ [ C -> A ] D _d x e. CC ) |
| 55 | 1 2 3 4 6 7 | ditgcl | |- ( ph -> S_ [ A -> B ] D _d x e. CC ) |
| 56 | 30 54 55 | addassd | |- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 57 | 55 | addlidd | |- ( ph -> ( 0 + S_ [ A -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
| 58 | 53 56 57 | 3eqtr3d | |- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 59 | 58 | ad2antrr | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 60 | 48 59 | eqtrd | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
| 61 | 60 | oveq1d | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 62 | 45 61 | eqtr3d | |- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 63 | 16 21 44 62 | lecasei | |- ( ( ph /\ A <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 64 | 11 | adantr | |- ( ( ph /\ B <_ A ) -> A e. RR ) |
| 65 | 20 | adantr | |- ( ( ph /\ B <_ A ) -> C e. RR ) |
| 66 | biid | |- ( ( B <_ A /\ A <_ C ) <-> ( B <_ A /\ A <_ C ) ) |
|
| 67 | 1 2 4 3 5 6 7 66 | ditgsplitlem | |- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
| 68 | 67 | oveq2d | |- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 69 | 1 2 3 4 6 7 | ditgswap | |- ( ph -> S_ [ B -> A ] D _d x = -u S_ [ A -> B ] D _d x ) |
| 70 | 69 | oveq2d | |- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) ) |
| 71 | 55 | negidd | |- ( ph -> ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) = 0 ) |
| 72 | 70 71 | eqtrd | |- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = 0 ) |
| 73 | 72 | oveq1d | |- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( 0 + S_ [ A -> C ] D _d x ) ) |
| 74 | 1 2 4 3 6 7 | ditgcl | |- ( ph -> S_ [ B -> A ] D _d x e. CC ) |
| 75 | 55 74 30 | addassd | |- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 76 | 30 | addlidd | |- ( ph -> ( 0 + S_ [ A -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 77 | 73 75 76 | 3eqtr3d | |- ( ph -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 78 | 77 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 79 | 68 78 | eqtr2d | |- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 80 | 15 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> B e. RR ) |
| 81 | 20 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> C e. RR ) |
| 82 | ancom | |- ( ( C <_ A /\ B <_ C ) <-> ( B <_ C /\ C <_ A ) ) |
|
| 83 | 1 2 4 5 3 6 7 82 | ditgsplitlem | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> A ] D _d x = ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) ) |
| 84 | 83 | oveq1d | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) ) |
| 85 | 32 54 30 | addassd | |- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 86 | 1 2 5 3 6 7 | ditgswap | |- ( ph -> S_ [ A -> C ] D _d x = -u S_ [ C -> A ] D _d x ) |
| 87 | 86 | oveq2d | |- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) ) |
| 88 | 54 | negidd | |- ( ph -> ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) = 0 ) |
| 89 | 87 88 | eqtrd | |- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = 0 ) |
| 90 | 89 | oveq2d | |- ( ph -> ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = ( S_ [ B -> C ] D _d x + 0 ) ) |
| 91 | 32 | addridd | |- ( ph -> ( S_ [ B -> C ] D _d x + 0 ) = S_ [ B -> C ] D _d x ) |
| 92 | 85 90 91 | 3eqtrd | |- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
| 93 | 92 | ad2antrr | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
| 94 | 84 93 | eqtr2d | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
| 95 | 94 | oveq2d | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 96 | 77 | ad2antrr | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 97 | 95 96 | eqtr2d | |- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 98 | 97 | adantllr | |- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 99 | ancom | |- ( ( B <_ A /\ C <_ B ) <-> ( C <_ B /\ B <_ A ) ) |
|
| 100 | 1 2 5 4 3 6 7 99 | ditgsplitlem | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> A ] D _d x = ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) ) |
| 101 | 100 | oveq1d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) ) |
| 102 | 31 74 55 | addassd | |- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 103 | 1 2 4 3 6 7 | ditgswap | |- ( ph -> S_ [ A -> B ] D _d x = -u S_ [ B -> A ] D _d x ) |
| 104 | 103 | oveq2d | |- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) ) |
| 105 | 74 | negidd | |- ( ph -> ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) = 0 ) |
| 106 | 104 105 | eqtrd | |- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = 0 ) |
| 107 | 106 | oveq2d | |- ( ph -> ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = ( S_ [ C -> B ] D _d x + 0 ) ) |
| 108 | 31 | addridd | |- ( ph -> ( S_ [ C -> B ] D _d x + 0 ) = S_ [ C -> B ] D _d x ) |
| 109 | 102 107 108 | 3eqtrd | |- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
| 110 | 109 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
| 111 | 101 110 | eqtr2d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
| 112 | 111 | oveq2d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 113 | 58 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 114 | 112 113 | eqtr2d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
| 115 | 114 | oveq1d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
| 116 | 40 | ad2antrr | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 117 | 115 116 | eqtr2d | |- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 118 | 117 | adantlr | |- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 119 | 80 81 98 118 | lecasei | |- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 120 | 64 65 79 119 | lecasei | |- ( ( ph /\ B <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 121 | 11 15 63 120 | lecasei | |- ( ph -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |