This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ditgsplit . (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgsplit.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| ditgsplit.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| ditgsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ditgsplit.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ditgsplit.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ditgsplit.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ 𝑉 ) | ||
| ditgsplit.i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 ) | ||
| ditgsplit.1 | ⊢ ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) | ||
| Assertion | ditgsplitlem | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgsplit.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | ditgsplit.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | ditgsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 4 | ditgsplit.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 5 | ditgsplit.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 6 | ditgsplit.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ 𝑉 ) | |
| 7 | ditgsplit.i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 ) | |
| 8 | ditgsplit.1 | ⊢ ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) | |
| 9 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
| 11 | 3 10 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
| 12 | 11 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ∈ ℝ ) |
| 14 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) | |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) |
| 16 | 5 15 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) |
| 17 | 16 | simp1d | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐶 ∈ ℝ ) |
| 19 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) | |
| 20 | 1 2 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
| 21 | 4 20 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
| 22 | 21 | simp1d | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ∈ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝜓 ∧ 𝜃 ) ) | |
| 25 | 24 8 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
| 26 | 25 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ≤ 𝐵 ) |
| 27 | 25 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ≤ 𝐶 ) |
| 28 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) | |
| 29 | 12 17 28 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 31 | 23 26 27 30 | mpbir3and | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 32 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 33 | 11 | simp2d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
| 34 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) | |
| 35 | 32 33 34 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 36 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 37 | 16 | simp3d | ⊢ ( 𝜑 → 𝐶 ≤ 𝑌 ) |
| 38 | iooss2 | ⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐶 ≤ 𝑌 ) → ( 𝑋 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) | |
| 39 | 36 37 38 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 40 | 35 39 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 41 | 40 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
| 42 | iblmbf | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ MblFn ) | |
| 43 | 7 42 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ MblFn ) |
| 44 | 43 6 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ ℂ ) |
| 45 | 41 44 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝐷 ∈ ℂ ) |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐶 ) ) → 𝐷 ∈ ℂ ) |
| 47 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) | |
| 48 | 32 33 47 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
| 49 | 21 | simp3d | ⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
| 50 | iooss2 | ⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) | |
| 51 | 36 49 50 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 52 | 48 51 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 53 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 54 | 53 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 55 | 52 54 6 7 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 57 | 21 | simp2d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
| 58 | iooss1 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) | |
| 59 | 32 57 58 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝐶 ) ) |
| 60 | 59 39 | sstrd | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
| 61 | ioombl | ⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol | |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
| 63 | 60 62 6 7 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
| 65 | 13 18 31 46 56 64 | itgsplitioo | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 = ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) ) |
| 66 | 13 23 18 26 27 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝐴 ≤ 𝐶 ) |
| 67 | 66 | ditgpos | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐶 ) 𝐷 d 𝑥 ) |
| 68 | 26 | ditgpos | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 ) |
| 69 | 27 | ditgpos | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) |
| 70 | 68 69 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 (,) 𝐶 ) 𝐷 d 𝑥 ) ) |
| 71 | 65 67 70 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
| 72 | 71 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |