This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpqf | |- +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st | |- ( x e. ( N. X. N. ) -> ( 1st ` x ) e. N. ) |
|
| 2 | xp2nd | |- ( y e. ( N. X. N. ) -> ( 2nd ` y ) e. N. ) |
|
| 3 | mulclpi | |- ( ( ( 1st ` x ) e. N. /\ ( 2nd ` y ) e. N. ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) |
| 5 | xp1st | |- ( y e. ( N. X. N. ) -> ( 1st ` y ) e. N. ) |
|
| 6 | xp2nd | |- ( x e. ( N. X. N. ) -> ( 2nd ` x ) e. N. ) |
|
| 7 | mulclpi | |- ( ( ( 1st ` y ) e. N. /\ ( 2nd ` x ) e. N. ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) |
| 9 | addclpi | |- ( ( ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. /\ ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) e. N. ) |
|
| 10 | 4 8 9 | syl2anc | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) e. N. ) |
| 11 | mulclpi | |- ( ( ( 2nd ` x ) e. N. /\ ( 2nd ` y ) e. N. ) -> ( ( 2nd ` x ) .N ( 2nd ` y ) ) e. N. ) |
|
| 12 | 6 2 11 | syl2an | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 2nd ` x ) .N ( 2nd ` y ) ) e. N. ) |
| 13 | 10 12 | opelxpd | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) ) |
| 14 | 13 | rgen2 | |- A. x e. ( N. X. N. ) A. y e. ( N. X. N. ) <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) |
| 15 | df-plpq | |- +pQ = ( x e. ( N. X. N. ) , y e. ( N. X. N. ) |-> <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. ) |
|
| 16 | 15 | fmpo | |- ( A. x e. ( N. X. N. ) A. y e. ( N. X. N. ) <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) <-> +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) ) |
| 17 | 14 16 | mpbi | |- +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |