This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf for class substitution version. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbhypf.1 | |- F/_ x A |
|
| csbhypf.2 | |- F/_ x C |
||
| csbhypf.3 | |- ( x = A -> B = C ) |
||
| Assertion | csbhypf | |- ( y = A -> [_ y / x ]_ B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 | |- F/_ x A |
|
| 2 | csbhypf.2 | |- F/_ x C |
|
| 3 | csbhypf.3 | |- ( x = A -> B = C ) |
|
| 4 | 1 | nfeq2 | |- F/ x y = A |
| 5 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 6 | 5 2 | nfeq | |- F/ x [_ y / x ]_ B = C |
| 7 | 4 6 | nfim | |- F/ x ( y = A -> [_ y / x ]_ B = C ) |
| 8 | eqeq1 | |- ( x = y -> ( x = A <-> y = A ) ) |
|
| 9 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 10 | 9 | eqeq1d | |- ( x = y -> ( B = C <-> [_ y / x ]_ B = C ) ) |
| 11 | 8 10 | imbi12d | |- ( x = y -> ( ( x = A -> B = C ) <-> ( y = A -> [_ y / x ]_ B = C ) ) ) |
| 12 | 7 11 3 | chvarfv | |- ( y = A -> [_ y / x ]_ B = C ) |