This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem19 , (general version of the former prtlem18 ). (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem18 | |- ( ( A e. V /\ B e. W ) -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( B e. [ x ] R <-> A ,~ R B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe | |- ( ( x e. dom R /\ ( A e. [ x ] R /\ B e. [ x ] R ) ) -> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) |
|
| 2 | 1 | expr | |- ( ( x e. dom R /\ A e. [ x ] R ) -> ( B e. [ x ] R -> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 3 | 2 | adantl | |- ( ( ( ( A e. V /\ B e. W ) /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( B e. [ x ] R -> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 4 | relbrcoss | |- ( ( A e. V /\ B e. W ) -> ( Rel R -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) ) |
|
| 5 | disjrel | |- ( Disj R -> Rel R ) |
|
| 6 | 4 5 | impel | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 7 | 6 | adantr | |- ( ( ( ( A e. V /\ B e. W ) /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 8 | 3 7 | sylibrd | |- ( ( ( ( A e. V /\ B e. W ) /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( B e. [ x ] R -> A ,~ R B ) ) |
| 9 | 8 | ex | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( B e. [ x ] R -> A ,~ R B ) ) ) |
| 10 | disjlem17 | |- ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) |
|
| 11 | 10 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) |
| 12 | relbrcoss | |- ( ( A e. V /\ B e. W ) -> ( Rel R -> ( A ,~ R B <-> E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) ) ) ) |
|
| 13 | 12 5 | impel | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( A ,~ R B <-> E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) ) ) |
| 14 | 13 | imbi1d | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( ( A ,~ R B -> B e. [ x ] R ) <-> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) |
| 15 | 11 14 | sylibrd | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( A ,~ R B -> B e. [ x ] R ) ) ) |
| 16 | 9 15 | impbidd | |- ( ( ( A e. V /\ B e. W ) /\ Disj R ) -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( B e. [ x ] R <-> A ,~ R B ) ) ) |
| 17 | 16 | ex | |- ( ( A e. V /\ B e. W ) -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( B e. [ x ] R <-> A ,~ R B ) ) ) ) |