This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem18 , (general version of the former prtlem17 ). (Contributed by Peter Mazsa, 10-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem17 | |- ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | |- ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) <-> E. y ( y e. dom R /\ ( A e. [ y ] R /\ B e. [ y ] R ) ) ) |
|
| 2 | an32 | |- ( ( ( x e. dom R /\ y e. dom R ) /\ A e. [ x ] R ) <-> ( ( x e. dom R /\ A e. [ x ] R ) /\ y e. dom R ) ) |
|
| 3 | disjlem14 | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) ) |
|
| 4 | eleq2 | |- ( [ x ] R = [ y ] R -> ( B e. [ x ] R <-> B e. [ y ] R ) ) |
|
| 5 | 4 | biimprd | |- ( [ x ] R = [ y ] R -> ( B e. [ y ] R -> B e. [ x ] R ) ) |
| 6 | 3 5 | syl8 | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> ( B e. [ y ] R -> B e. [ x ] R ) ) ) ) |
| 7 | 6 | exp4a | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( A e. [ x ] R -> ( A e. [ y ] R -> ( B e. [ y ] R -> B e. [ x ] R ) ) ) ) ) |
| 8 | 7 | impd | |- ( Disj R -> ( ( ( x e. dom R /\ y e. dom R ) /\ A e. [ x ] R ) -> ( A e. [ y ] R -> ( B e. [ y ] R -> B e. [ x ] R ) ) ) ) |
| 9 | 2 8 | biimtrrid | |- ( Disj R -> ( ( ( x e. dom R /\ A e. [ x ] R ) /\ y e. dom R ) -> ( A e. [ y ] R -> ( B e. [ y ] R -> B e. [ x ] R ) ) ) ) |
| 10 | 9 | expd | |- ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( y e. dom R -> ( A e. [ y ] R -> ( B e. [ y ] R -> B e. [ x ] R ) ) ) ) ) |
| 11 | 10 | imp5a | |- ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( y e. dom R -> ( ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) ) |
| 12 | 11 | imp4b | |- ( ( Disj R /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( ( y e. dom R /\ ( A e. [ y ] R /\ B e. [ y ] R ) ) -> B e. [ x ] R ) ) |
| 13 | 12 | exlimdv | |- ( ( Disj R /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( E. y ( y e. dom R /\ ( A e. [ y ] R /\ B e. [ y ] R ) ) -> B e. [ x ] R ) ) |
| 14 | 1 13 | biimtrid | |- ( ( Disj R /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) |
| 15 | 14 | ex | |- ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( E. y e. dom R ( A e. [ y ] R /\ B e. [ y ] R ) -> B e. [ x ] R ) ) ) |