This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem19 , (general version of the former prtlem18 ). (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem18 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe | ⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) | |
| 2 | 1 | expr | ⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 3 | 2 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 4 | relbrcoss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) | |
| 5 | disjrel | ⊢ ( Disj 𝑅 → Rel 𝑅 ) | |
| 6 | 4 5 | impel | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 8 | 3 7 | sylibrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → 𝐴 ≀ 𝑅 𝐵 ) ) |
| 9 | 8 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → 𝐴 ≀ 𝑅 𝐵 ) ) ) |
| 10 | disjlem17 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 12 | relbrcoss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) ) | |
| 13 | 12 5 | impel | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) |
| 14 | 13 | imbi1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝐴 ≀ 𝑅 𝐵 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 15 | 11 14 | sylibrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 16 | 9 15 | impbidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) ) ) |