This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A and B are cosets by relation R : a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relbrcoss | |- ( ( A e. V /\ B e. W ) -> ( Rel R -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 2 | 1 | cosseqd | |- ( Rel R -> ,~ ( R |` dom R ) = ,~ R ) |
| 3 | 2 | breqd | |- ( Rel R -> ( A ,~ ( R |` dom R ) B <-> A ,~ R B ) ) |
| 4 | 3 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ ( R |` dom R ) B <-> A ,~ R B ) ) |
| 5 | br1cossres2 | |- ( ( A e. V /\ B e. W ) -> ( A ,~ ( R |` dom R ) B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
|
| 6 | 5 | adantr | |- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ ( R |` dom R ) B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 7 | 4 6 | bitr3d | |- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 8 | 7 | ex | |- ( ( A e. V /\ B e. W ) -> ( Rel R -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) ) |