This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| Assertion | prtlem18 | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( w e. v <-> z .~ w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| 2 | rspe | |- ( ( v e. A /\ ( z e. v /\ w e. v ) ) -> E. v e. A ( z e. v /\ w e. v ) ) |
|
| 3 | 2 | expr | |- ( ( v e. A /\ z e. v ) -> ( w e. v -> E. v e. A ( z e. v /\ w e. v ) ) ) |
| 4 | 1 | prtlem13 | |- ( z .~ w <-> E. v e. A ( z e. v /\ w e. v ) ) |
| 5 | 3 4 | imbitrrdi | |- ( ( v e. A /\ z e. v ) -> ( w e. v -> z .~ w ) ) |
| 6 | 5 | a1i | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( w e. v -> z .~ w ) ) ) |
| 7 | 1 | prtlem13 | |- ( z .~ w <-> E. p e. A ( z e. p /\ w e. p ) ) |
| 8 | prtlem17 | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( E. p e. A ( z e. p /\ w e. p ) -> w e. v ) ) ) |
|
| 9 | 7 8 | syl7bi | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( z .~ w -> w e. v ) ) ) |
| 10 | 6 9 | impbidd | |- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( w e. v <-> z .~ w ) ) ) |