This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger form of pwuninel . We can use pwuninel , 2pwuninel to create one or two sets disjoint from a given set A , but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set B we can construct a set x that is equinumerous to it and disjoint from A . (Contributed by Mario Carneiro, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjen | |- ( ( A e. V /\ B e. W ) -> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 | |- ( x e. ( B X. { ~P U. ran A } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 2 | 1 | ad2antll | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 3 | simprl | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> x e. A ) |
|
| 4 | 2 3 | eqeltrrd | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
| 5 | fvex | |- ( 1st ` x ) e. _V |
|
| 6 | fvex | |- ( 2nd ` x ) e. _V |
|
| 7 | 5 6 | opelrn | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. A -> ( 2nd ` x ) e. ran A ) |
| 8 | 4 7 | syl | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) e. ran A ) |
| 9 | pwuninel | |- -. ~P U. ran A e. ran A |
|
| 10 | xp2nd | |- ( x e. ( B X. { ~P U. ran A } ) -> ( 2nd ` x ) e. { ~P U. ran A } ) |
|
| 11 | 10 | ad2antll | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) e. { ~P U. ran A } ) |
| 12 | elsni | |- ( ( 2nd ` x ) e. { ~P U. ran A } -> ( 2nd ` x ) = ~P U. ran A ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) = ~P U. ran A ) |
| 14 | 13 | eleq1d | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( ( 2nd ` x ) e. ran A <-> ~P U. ran A e. ran A ) ) |
| 15 | 9 14 | mtbiri | |- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> -. ( 2nd ` x ) e. ran A ) |
| 16 | 8 15 | pm2.65da | |- ( ( A e. V /\ B e. W ) -> -. ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) |
| 17 | elin | |- ( x e. ( A i^i ( B X. { ~P U. ran A } ) ) <-> ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) |
|
| 18 | 16 17 | sylnibr | |- ( ( A e. V /\ B e. W ) -> -. x e. ( A i^i ( B X. { ~P U. ran A } ) ) ) |
| 19 | 18 | eq0rdv | |- ( ( A e. V /\ B e. W ) -> ( A i^i ( B X. { ~P U. ran A } ) ) = (/) ) |
| 20 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
| 21 | rnexg | |- ( A e. V -> ran A e. _V ) |
|
| 22 | 21 | adantr | |- ( ( A e. V /\ B e. W ) -> ran A e. _V ) |
| 23 | uniexg | |- ( ran A e. _V -> U. ran A e. _V ) |
|
| 24 | pwexg | |- ( U. ran A e. _V -> ~P U. ran A e. _V ) |
|
| 25 | 22 23 24 | 3syl | |- ( ( A e. V /\ B e. W ) -> ~P U. ran A e. _V ) |
| 26 | xpsneng | |- ( ( B e. W /\ ~P U. ran A e. _V ) -> ( B X. { ~P U. ran A } ) ~~ B ) |
|
| 27 | 20 25 26 | syl2anc | |- ( ( A e. V /\ B e. W ) -> ( B X. { ~P U. ran A } ) ~~ B ) |
| 28 | 19 27 | jca | |- ( ( A e. V /\ B e. W ) -> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) |