This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjdmqsss | |- ( Disj R -> ( dom R /. R ) C_ ( dom ,~ R /. ,~ R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjrel | |- ( Disj R -> Rel R ) |
|
| 2 | releldmqs | |- ( v e. _V -> ( Rel R -> ( v e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R v = [ u ] R ) ) ) |
|
| 3 | 2 | elv | |- ( Rel R -> ( v e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R v = [ u ] R ) ) |
| 4 | 1 3 | syl | |- ( Disj R -> ( v e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R v = [ u ] R ) ) |
| 5 | disjlem19 | |- ( x e. _V -> ( Disj R -> ( ( u e. dom R /\ x e. [ u ] R ) -> [ u ] R = [ x ] ,~ R ) ) ) |
|
| 6 | 5 | elv | |- ( Disj R -> ( ( u e. dom R /\ x e. [ u ] R ) -> [ u ] R = [ x ] ,~ R ) ) |
| 7 | 6 | ralrimivv | |- ( Disj R -> A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R ) |
| 8 | 2r19.29 | |- ( ( A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R /\ E. u e. dom R E. x e. [ u ] R v = [ u ] R ) -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) ) |
|
| 9 | 8 | ex | |- ( A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R -> ( E. u e. dom R E. x e. [ u ] R v = [ u ] R -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) ) ) |
| 10 | 7 9 | syl | |- ( Disj R -> ( E. u e. dom R E. x e. [ u ] R v = [ u ] R -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) ) ) |
| 11 | 4 10 | sylbid | |- ( Disj R -> ( v e. ( dom R /. R ) -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) ) ) |
| 12 | eqtr | |- ( ( v = [ u ] R /\ [ u ] R = [ x ] ,~ R ) -> v = [ x ] ,~ R ) |
|
| 13 | 12 | ancoms | |- ( ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) -> v = [ x ] ,~ R ) |
| 14 | 13 | reximi | |- ( E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) -> E. x e. [ u ] R v = [ x ] ,~ R ) |
| 15 | 14 | reximi | |- ( E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ u ] R ) -> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) |
| 16 | 11 15 | syl6 | |- ( Disj R -> ( v e. ( dom R /. R ) -> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) |
| 17 | releldmqscoss | |- ( v e. _V -> ( Rel R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) ) |
|
| 18 | 17 | elv | |- ( Rel R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) |
| 19 | 1 18 | syl | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) |
| 20 | 16 19 | sylibrd | |- ( Disj R -> ( v e. ( dom R /. R ) -> v e. ( dom ,~ R /. ,~ R ) ) ) |
| 21 | 20 | ssrdv | |- ( Disj R -> ( dom R /. R ) C_ ( dom ,~ R /. ,~ R ) ) |