This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmqscoss | |- ( A e. V -> ( Rel R -> ( A e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmqs1cossres | |- ( A e. V -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) ) ) |
| 3 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 4 | 3 | cosseqd | |- ( Rel R -> ,~ ( R |` dom R ) = ,~ R ) |
| 5 | 4 | dmqseqd | |- ( Rel R -> ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) = ( dom ,~ R /. ,~ R ) ) |
| 6 | 5 | eleq2d | |- ( Rel R -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> A e. ( dom ,~ R /. ,~ R ) ) ) |
| 7 | 6 | adantl | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ ( R |` dom R ) /. ,~ ( R |` dom R ) ) <-> A e. ( dom ,~ R /. ,~ R ) ) ) |
| 8 | 4 | eceq2d | |- ( Rel R -> [ x ] ,~ ( R |` dom R ) = [ x ] ,~ R ) |
| 9 | 8 | eqeq2d | |- ( Rel R -> ( A = [ x ] ,~ ( R |` dom R ) <-> A = [ x ] ,~ R ) ) |
| 10 | 9 | 2rexbidv | |- ( Rel R -> ( E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
| 11 | 10 | adantl | |- ( ( A e. V /\ Rel R ) -> ( E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ ( R |` dom R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
| 12 | 2 7 11 | 3bitr3d | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) |
| 13 | 12 | ex | |- ( A e. V -> ( Rel R -> ( A e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R A = [ x ] ,~ R ) ) ) |