This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmqs | |- ( A e. V -> ( Rel R -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 2 | 1 | dmqseqd | |- ( Rel R -> ( dom ( R |` dom R ) /. ( R |` dom R ) ) = ( dom R /. R ) ) |
| 3 | 2 | eleq2d | |- ( Rel R -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
| 4 | 3 | adantl | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> A e. ( dom R /. R ) ) ) |
| 5 | eldmqsres2 | |- ( A e. V -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
|
| 6 | 5 | adantr | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom ( R |` dom R ) /. ( R |` dom R ) ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
| 7 | 4 6 | bitr3d | |- ( ( A e. V /\ Rel R ) -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) |
| 8 | 7 | ex | |- ( A e. V -> ( Rel R -> ( A e. ( dom R /. R ) <-> E. u e. dom R E. x e. [ u ] R A = [ u ] R ) ) ) |