This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 11-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indcthing.b | |- ( ph -> B = ( Base ` C ) ) |
|
| indcthing.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| indcthing.c | |- ( ph -> C e. Cat ) |
||
| discthing.i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = if ( x = y , { I } , (/) ) ) |
||
| Assertion | discthing | |- ( ph -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | indcthing.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 3 | indcthing.c | |- ( ph -> C e. Cat ) |
|
| 4 | discthing.i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = if ( x = y , { I } , (/) ) ) |
|
| 5 | eleq2w2 | |- ( { I } = if ( x = y , { I } , (/) ) -> ( i e. { I } <-> i e. if ( x = y , { I } , (/) ) ) ) |
|
| 6 | 5 | mobidv | |- ( { I } = if ( x = y , { I } , (/) ) -> ( E* i i e. { I } <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 7 | eleq2w2 | |- ( (/) = if ( x = y , { I } , (/) ) -> ( i e. (/) <-> i e. if ( x = y , { I } , (/) ) ) ) |
|
| 8 | 7 | mobidv | |- ( (/) = if ( x = y , { I } , (/) ) -> ( E* i i e. (/) <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 9 | eqid | |- { I } = { I } |
|
| 10 | mosn | |- ( { I } = { I } -> E* i i e. { I } ) |
|
| 11 | 9 10 | mp1i | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ x = y ) -> E* i i e. { I } ) |
| 12 | eqid | |- (/) = (/) |
|
| 13 | mo0 | |- ( (/) = (/) -> E* i i e. (/) ) |
|
| 14 | 12 13 | mp1i | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ -. x = y ) -> E* i i e. (/) ) |
| 15 | 6 8 11 14 | ifbothda | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* i i e. if ( x = y , { I } , (/) ) ) |
| 16 | 4 | eleq2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( i e. ( x H y ) <-> i e. if ( x = y , { I } , (/) ) ) ) |
| 17 | 16 | mobidv | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E* i i e. ( x H y ) <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 18 | 15 17 | mpbird | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* i i e. ( x H y ) ) |
| 19 | 1 2 18 3 | isthincd | |- ( ph -> C e. ThinCat ) |