This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 11-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indcthing.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| indcthing.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| indcthing.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| discthing.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) | ||
| Assertion | discthing | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | indcthing.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 3 | indcthing.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | discthing.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) | |
| 5 | eleq2w2 | ⊢ ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ { 𝐼 } ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) | |
| 6 | 5 | mobidv | ⊢ ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ { 𝐼 } ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 7 | eleq2w2 | ⊢ ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ ∅ ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) | |
| 8 | 7 | mobidv | ⊢ ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ ∅ ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 9 | eqid | ⊢ { 𝐼 } = { 𝐼 } | |
| 10 | mosn | ⊢ ( { 𝐼 } = { 𝐼 } → ∃* 𝑖 𝑖 ∈ { 𝐼 } ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ { 𝐼 } ) |
| 12 | eqid | ⊢ ∅ = ∅ | |
| 13 | mo0 | ⊢ ( ∅ = ∅ → ∃* 𝑖 𝑖 ∈ ∅ ) | |
| 14 | 12 13 | mp1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ ∅ ) |
| 15 | 6 8 11 14 | ifbothda | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) |
| 16 | 4 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 17 | 16 | mobidv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 18 | 15 17 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 19 | 1 2 18 3 | isthincd | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |