This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | ||
| ipcl.7 | |||
| Assertion | diporthcom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | ||
| 2 | ipcl.7 | ||
| 3 | fveq2 | ||
| 4 | cj0 | ||
| 5 | 3 4 | eqtrdi | |
| 6 | 1 2 | dipcj | |
| 7 | 6 | eqeq1d | |
| 8 | 5 7 | imbitrid | |
| 9 | fveq2 | ||
| 10 | 9 4 | eqtrdi | |
| 11 | 1 2 | dipcj | |
| 12 | 11 | 3com23 | |
| 13 | 12 | eqeq1d | |
| 14 | 10 13 | imbitrid | |
| 15 | 8 14 | impbid |