This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfxrn2 | |- ( R |X. S ) = `' { <. <. x , y >. , u >. | ( u R x /\ u S y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel | |- Rel ( R |X. S ) |
|
| 2 | dfrel4v | |- ( Rel ( R |X. S ) <-> ( R |X. S ) = { <. u , z >. | u ( R |X. S ) z } ) |
|
| 3 | 1 2 | mpbi | |- ( R |X. S ) = { <. u , z >. | u ( R |X. S ) z } |
| 4 | breq2 | |- ( z = <. x , y >. -> ( u ( R |X. S ) z <-> u ( R |X. S ) <. x , y >. ) ) |
|
| 5 | brxrn2 | |- ( u e. _V -> ( u ( R |X. S ) z <-> E. x E. y ( z = <. x , y >. /\ u R x /\ u S y ) ) ) |
|
| 6 | 5 | elv | |- ( u ( R |X. S ) z <-> E. x E. y ( z = <. x , y >. /\ u R x /\ u S y ) ) |
| 7 | brxrn | |- ( ( u e. _V /\ x e. _V /\ y e. _V ) -> ( u ( R |X. S ) <. x , y >. <-> ( u R x /\ u S y ) ) ) |
|
| 8 | 7 | el3v | |- ( u ( R |X. S ) <. x , y >. <-> ( u R x /\ u S y ) ) |
| 9 | 8 | anbi2i | |- ( ( z = <. x , y >. /\ u ( R |X. S ) <. x , y >. ) <-> ( z = <. x , y >. /\ ( u R x /\ u S y ) ) ) |
| 10 | 3anass | |- ( ( z = <. x , y >. /\ u R x /\ u S y ) <-> ( z = <. x , y >. /\ ( u R x /\ u S y ) ) ) |
|
| 11 | 9 10 | bitr4i | |- ( ( z = <. x , y >. /\ u ( R |X. S ) <. x , y >. ) <-> ( z = <. x , y >. /\ u R x /\ u S y ) ) |
| 12 | 11 | 2exbii | |- ( E. x E. y ( z = <. x , y >. /\ u ( R |X. S ) <. x , y >. ) <-> E. x E. y ( z = <. x , y >. /\ u R x /\ u S y ) ) |
| 13 | 4 | copsex2gb | |- ( E. x E. y ( z = <. x , y >. /\ u ( R |X. S ) <. x , y >. ) <-> ( z e. ( _V X. _V ) /\ u ( R |X. S ) z ) ) |
| 14 | 6 12 13 | 3bitr2i | |- ( u ( R |X. S ) z <-> ( z e. ( _V X. _V ) /\ u ( R |X. S ) z ) ) |
| 15 | 14 | simplbi | |- ( u ( R |X. S ) z -> z e. ( _V X. _V ) ) |
| 16 | 4 15 | cnvoprab | |- `' { <. <. x , y >. , u >. | u ( R |X. S ) <. x , y >. } = { <. u , z >. | u ( R |X. S ) z } |
| 17 | 8 | oprabbii | |- { <. <. x , y >. , u >. | u ( R |X. S ) <. x , y >. } = { <. <. x , y >. , u >. | ( u R x /\ u S y ) } |
| 18 | 17 | cnveqi | |- `' { <. <. x , y >. , u >. | u ( R |X. S ) <. x , y >. } = `' { <. <. x , y >. , u >. | ( u R x /\ u S y ) } |
| 19 | 3 16 18 | 3eqtr2i | |- ( R |X. S ) = `' { <. <. x , y >. , u >. | ( u R x /\ u S y ) } |