This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof shortened by Thierry Arnoux, 20-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnvoprab.1 | |- ( a = <. x , y >. -> ( ps <-> ph ) ) |
|
| cnvoprab.2 | |- ( ps -> a e. ( _V X. _V ) ) |
||
| Assertion | cnvoprab | |- `' { <. <. x , y >. , z >. | ph } = { <. z , a >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvoprab.1 | |- ( a = <. x , y >. -> ( ps <-> ph ) ) |
|
| 2 | cnvoprab.2 | |- ( ps -> a e. ( _V X. _V ) ) |
|
| 3 | 1 | dfoprab3 | |- { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. <. x , y >. , z >. | ph } |
| 4 | 3 | cnveqi | |- `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = `' { <. <. x , y >. , z >. | ph } |
| 5 | cnvopab | |- `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. z , a >. | ( a e. ( _V X. _V ) /\ ps ) } |
|
| 6 | inopab | |- ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ( a e. ( _V X. _V ) /\ ps ) } |
|
| 7 | 2 | ssopab2i | |- { <. z , a >. | ps } C_ { <. z , a >. | a e. ( _V X. _V ) } |
| 8 | sseqin2 | |- ( { <. z , a >. | ps } C_ { <. z , a >. | a e. ( _V X. _V ) } <-> ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ps } ) |
|
| 9 | 7 8 | mpbi | |- ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ps } |
| 10 | 5 6 9 | 3eqtr2i | |- `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. z , a >. | ps } |
| 11 | 4 10 | eqtr3i | |- `' { <. <. x , y >. , z >. | ph } = { <. z , a >. | ps } |