This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga . (Contributed by NM, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex2ga.1 | |- ( A = <. x , y >. -> ( ph <-> ps ) ) |
|
| Assertion | copsex2gb | |- ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2ga.1 | |- ( A = <. x , y >. -> ( ph <-> ps ) ) |
|
| 2 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
| 3 | 2 | anbi1i | |- ( ( A e. ( _V X. _V ) /\ ph ) <-> ( E. x E. y A = <. x , y >. /\ ph ) ) |
| 4 | 19.41vv | |- ( E. x E. y ( A = <. x , y >. /\ ph ) <-> ( E. x E. y A = <. x , y >. /\ ph ) ) |
|
| 5 | 1 | pm5.32i | |- ( ( A = <. x , y >. /\ ph ) <-> ( A = <. x , y >. /\ ps ) ) |
| 6 | 5 | 2exbii | |- ( E. x E. y ( A = <. x , y >. /\ ph ) <-> E. x E. y ( A = <. x , y >. /\ ps ) ) |
| 7 | 3 4 6 | 3bitr2ri | |- ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) ) |