This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a proposition is implied by x e.V , y e. V and z e.V (which is true, see vex ), then it is true. Inference forms (with |- A e. V , |- B e.V and |- C e. V hypotheses) of the general theorems (proving |- ( ( A e. V /\ B e. W /\ C e. X ) -> assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | el3v.1 | |- ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ph ) |
|
| Assertion | el3v | |- ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el3v.1 | |- ( ( x e. _V /\ y e. _V /\ z e. _V ) -> ph ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | vex | |- z e. _V |
|
| 5 | 2 3 4 1 | mp3an | |- ph |