This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a ternary relation over a range Cartesian product. Together with xrnss3v , this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brxrn | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. S ) <. B , C >. <-> ( A R B /\ A S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrn | |- ( R |X. S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) |
|
| 2 | 1 | breqi | |- ( A ( R |X. S ) <. B , C >. <-> A ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) <. B , C >. ) |
| 3 | 2 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. S ) <. B , C >. <-> A ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) <. B , C >. ) ) |
| 4 | brin | |- ( A ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) <. B , C >. <-> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. /\ A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. ) ) |
|
| 5 | 4 | a1i | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. S ) ) <. B , C >. <-> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. /\ A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. ) ) ) |
| 6 | opex | |- <. B , C >. e. _V |
|
| 7 | brcog | |- ( ( A e. V /\ <. B , C >. e. _V ) -> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. <-> E. x ( A R x /\ x `' ( 1st |` ( _V X. _V ) ) <. B , C >. ) ) ) |
|
| 8 | 6 7 | mpan2 | |- ( A e. V -> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. <-> E. x ( A R x /\ x `' ( 1st |` ( _V X. _V ) ) <. B , C >. ) ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. <-> E. x ( A R x /\ x `' ( 1st |` ( _V X. _V ) ) <. B , C >. ) ) ) |
| 10 | brcnvg | |- ( ( x e. _V /\ <. B , C >. e. _V ) -> ( x `' ( 1st |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 1st |` ( _V X. _V ) ) x ) ) |
|
| 11 | 6 10 | mpan2 | |- ( x e. _V -> ( x `' ( 1st |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 1st |` ( _V X. _V ) ) x ) ) |
| 12 | 11 | elv | |- ( x `' ( 1st |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 1st |` ( _V X. _V ) ) x ) |
| 13 | brres | |- ( x e. _V -> ( <. B , C >. ( 1st |` ( _V X. _V ) ) x <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 1st x ) ) ) |
|
| 14 | 13 | elv | |- ( <. B , C >. ( 1st |` ( _V X. _V ) ) x <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 1st x ) ) |
| 15 | opelvvg | |- ( ( B e. W /\ C e. X ) -> <. B , C >. e. ( _V X. _V ) ) |
|
| 16 | 15 | biantrurd | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. 1st x <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 1st x ) ) ) |
| 17 | 14 16 | bitr4id | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. ( 1st |` ( _V X. _V ) ) x <-> <. B , C >. 1st x ) ) |
| 18 | br1steqg | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. 1st x <-> x = B ) ) |
|
| 19 | 17 18 | bitrd | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. ( 1st |` ( _V X. _V ) ) x <-> x = B ) ) |
| 20 | 19 | 3adant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. B , C >. ( 1st |` ( _V X. _V ) ) x <-> x = B ) ) |
| 21 | 12 20 | bitrid | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( x `' ( 1st |` ( _V X. _V ) ) <. B , C >. <-> x = B ) ) |
| 22 | 21 | anbi1cd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A R x /\ x `' ( 1st |` ( _V X. _V ) ) <. B , C >. ) <-> ( x = B /\ A R x ) ) ) |
| 23 | 22 | exbidv | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. x ( A R x /\ x `' ( 1st |` ( _V X. _V ) ) <. B , C >. ) <-> E. x ( x = B /\ A R x ) ) ) |
| 24 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
| 25 | 24 | ceqsexgv | |- ( B e. W -> ( E. x ( x = B /\ A R x ) <-> A R B ) ) |
| 26 | 25 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. x ( x = B /\ A R x ) <-> A R B ) ) |
| 27 | 9 23 26 | 3bitrd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. <-> A R B ) ) |
| 28 | brcog | |- ( ( A e. V /\ <. B , C >. e. _V ) -> ( A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. <-> E. y ( A S y /\ y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. ) ) ) |
|
| 29 | 6 28 | mpan2 | |- ( A e. V -> ( A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. <-> E. y ( A S y /\ y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. ) ) ) |
| 30 | 29 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. <-> E. y ( A S y /\ y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. ) ) ) |
| 31 | brcnvg | |- ( ( y e. _V /\ <. B , C >. e. _V ) -> ( y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 2nd |` ( _V X. _V ) ) y ) ) |
|
| 32 | 6 31 | mpan2 | |- ( y e. _V -> ( y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 2nd |` ( _V X. _V ) ) y ) ) |
| 33 | 32 | elv | |- ( y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. <-> <. B , C >. ( 2nd |` ( _V X. _V ) ) y ) |
| 34 | brres | |- ( y e. _V -> ( <. B , C >. ( 2nd |` ( _V X. _V ) ) y <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 2nd y ) ) ) |
|
| 35 | 34 | elv | |- ( <. B , C >. ( 2nd |` ( _V X. _V ) ) y <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 2nd y ) ) |
| 36 | 15 | biantrurd | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. 2nd y <-> ( <. B , C >. e. ( _V X. _V ) /\ <. B , C >. 2nd y ) ) ) |
| 37 | 35 36 | bitr4id | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. ( 2nd |` ( _V X. _V ) ) y <-> <. B , C >. 2nd y ) ) |
| 38 | br2ndeqg | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. 2nd y <-> y = C ) ) |
|
| 39 | 37 38 | bitrd | |- ( ( B e. W /\ C e. X ) -> ( <. B , C >. ( 2nd |` ( _V X. _V ) ) y <-> y = C ) ) |
| 40 | 39 | 3adant1 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. B , C >. ( 2nd |` ( _V X. _V ) ) y <-> y = C ) ) |
| 41 | 33 40 | bitrid | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. <-> y = C ) ) |
| 42 | 41 | anbi1cd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A S y /\ y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. ) <-> ( y = C /\ A S y ) ) ) |
| 43 | 42 | exbidv | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. y ( A S y /\ y `' ( 2nd |` ( _V X. _V ) ) <. B , C >. ) <-> E. y ( y = C /\ A S y ) ) ) |
| 44 | breq2 | |- ( y = C -> ( A S y <-> A S C ) ) |
|
| 45 | 44 | ceqsexgv | |- ( C e. X -> ( E. y ( y = C /\ A S y ) <-> A S C ) ) |
| 46 | 45 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( E. y ( y = C /\ A S y ) <-> A S C ) ) |
| 47 | 30 43 46 | 3bitrd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. <-> A S C ) ) |
| 48 | 27 47 | anbi12d | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A ( `' ( 1st |` ( _V X. _V ) ) o. R ) <. B , C >. /\ A ( `' ( 2nd |` ( _V X. _V ) ) o. S ) <. B , C >. ) <-> ( A R B /\ A S C ) ) ) |
| 49 | 3 5 48 | 3bitrd | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A ( R |X. S ) <. B , C >. <-> ( A R B /\ A S C ) ) ) |