This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brxrn2 | |- ( A e. V -> ( A ( R |X. S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnss3v | |- ( R |X. S ) C_ ( _V X. ( _V X. _V ) ) |
|
| 2 | 1 | brel | |- ( A ( R |X. S ) B -> ( A e. _V /\ B e. ( _V X. _V ) ) ) |
| 3 | 2 | simprd | |- ( A ( R |X. S ) B -> B e. ( _V X. _V ) ) |
| 4 | elvv | |- ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) |
|
| 5 | 3 4 | sylib | |- ( A ( R |X. S ) B -> E. x E. y B = <. x , y >. ) |
| 6 | 5 | pm4.71ri | |- ( A ( R |X. S ) B <-> ( E. x E. y B = <. x , y >. /\ A ( R |X. S ) B ) ) |
| 7 | 19.41vv | |- ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> ( E. x E. y B = <. x , y >. /\ A ( R |X. S ) B ) ) |
|
| 8 | breq2 | |- ( B = <. x , y >. -> ( A ( R |X. S ) B <-> A ( R |X. S ) <. x , y >. ) ) |
|
| 9 | 8 | pm5.32i | |- ( ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) ) |
| 10 | 9 | 2exbii | |- ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) ) |
| 11 | 6 7 10 | 3bitr2i | |- ( A ( R |X. S ) B <-> E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) ) |
| 12 | brxrn | |- ( ( A e. V /\ x e. _V /\ y e. _V ) -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
|
| 13 | 12 | el3v23 | |- ( A e. V -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
| 14 | 13 | anbi2d | |- ( A e. V -> ( ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) ) |
| 15 | 3anass | |- ( ( B = <. x , y >. /\ A R x /\ A S y ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) |
|
| 16 | 14 15 | bitr4di | |- ( A e. V -> ( ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> ( B = <. x , y >. /\ A R x /\ A S y ) ) ) |
| 17 | 16 | 2exbidv | |- ( A e. V -> ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) ) |
| 18 | 11 17 | bitrid | |- ( A e. V -> ( A ( R |X. S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) ) |