This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of tpos when F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftpos2 | |- ( Rel dom F -> tpos F = ( F o. ( x e. `' dom F |-> U. `' { x } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmtpos | |- ( Rel dom F -> dom tpos F = `' dom F ) |
|
| 2 | 1 | reseq2d | |- ( Rel dom F -> ( tpos F |` dom tpos F ) = ( tpos F |` `' dom F ) ) |
| 3 | reltpos | |- Rel tpos F |
|
| 4 | resdm | |- ( Rel tpos F -> ( tpos F |` dom tpos F ) = tpos F ) |
|
| 5 | 3 4 | ax-mp | |- ( tpos F |` dom tpos F ) = tpos F |
| 6 | df-tpos | |- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
|
| 7 | 6 | reseq1i | |- ( tpos F |` `' dom F ) = ( ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |` `' dom F ) |
| 8 | resco | |- ( ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |` `' dom F ) = ( F o. ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' dom F ) ) |
|
| 9 | ssun1 | |- `' dom F C_ ( `' dom F u. { (/) } ) |
|
| 10 | resmpt | |- ( `' dom F C_ ( `' dom F u. { (/) } ) -> ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' dom F ) = ( x e. `' dom F |-> U. `' { x } ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' dom F ) = ( x e. `' dom F |-> U. `' { x } ) |
| 12 | 11 | coeq2i | |- ( F o. ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' dom F ) ) = ( F o. ( x e. `' dom F |-> U. `' { x } ) ) |
| 13 | 7 8 12 | 3eqtri | |- ( tpos F |` `' dom F ) = ( F o. ( x e. `' dom F |-> U. `' { x } ) ) |
| 14 | 2 5 13 | 3eqtr3g | |- ( Rel dom F -> tpos F = ( F o. ( x e. `' dom F |-> U. `' { x } ) ) ) |