This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of tpos when F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftpos2 | ⊢ ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmtpos | ⊢ ( Rel dom 𝐹 → dom tpos 𝐹 = ◡ dom 𝐹 ) | |
| 2 | 1 | reseq2d | ⊢ ( Rel dom 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = ( tpos 𝐹 ↾ ◡ dom 𝐹 ) ) |
| 3 | reltpos | ⊢ Rel tpos 𝐹 | |
| 4 | resdm | ⊢ ( Rel tpos 𝐹 → ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹 ) | |
| 5 | 3 4 | ax-mp | ⊢ ( tpos 𝐹 ↾ dom tpos 𝐹 ) = tpos 𝐹 |
| 6 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 7 | 6 | reseq1i | ⊢ ( tpos 𝐹 ↾ ◡ dom 𝐹 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ dom 𝐹 ) |
| 8 | resco | ⊢ ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ dom 𝐹 ) = ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) ) | |
| 9 | ssun1 | ⊢ ◡ dom 𝐹 ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) | |
| 10 | resmpt | ⊢ ( ◡ dom 𝐹 ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) = ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) = ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) |
| 12 | 11 | coeq2i | ⊢ ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ dom 𝐹 ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) |
| 13 | 7 8 12 | 3eqtri | ⊢ ( tpos 𝐹 ↾ ◡ dom 𝐹 ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) |
| 14 | 2 5 13 | 3eqtr3g | ⊢ ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ) |