This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the transposition of a function, which is a function G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tpos | |- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | |- F |
|
| 1 | 0 | ctpos | |- tpos F |
| 2 | vx | |- x |
|
| 3 | 0 | cdm | |- dom F |
| 4 | 3 | ccnv | |- `' dom F |
| 5 | c0 | |- (/) |
|
| 6 | 5 | csn | |- { (/) } |
| 7 | 4 6 | cun | |- ( `' dom F u. { (/) } ) |
| 8 | 2 | cv | |- x |
| 9 | 8 | csn | |- { x } |
| 10 | 9 | ccnv | |- `' { x } |
| 11 | 10 | cuni | |- U. `' { x } |
| 12 | 2 7 11 | cmpt | |- ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |
| 13 | 0 12 | ccom | |- ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
| 14 | 1 13 | wceq | |- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |