This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ideqg | |- ( B e. V -> ( A _I B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( B e. V -> B e. V ) |
|
| 2 | reli | |- Rel _I |
|
| 3 | 2 | brrelex1i | |- ( A _I B -> A e. _V ) |
| 4 | 1 3 | anim12ci | |- ( ( B e. V /\ A _I B ) -> ( A e. _V /\ B e. V ) ) |
| 5 | eleq1 | |- ( A = B -> ( A e. V <-> B e. V ) ) |
|
| 6 | 5 | biimparc | |- ( ( B e. V /\ A = B ) -> A e. V ) |
| 7 | 6 | elexd | |- ( ( B e. V /\ A = B ) -> A e. _V ) |
| 8 | simpl | |- ( ( B e. V /\ A = B ) -> B e. V ) |
|
| 9 | 7 8 | jca | |- ( ( B e. V /\ A = B ) -> ( A e. _V /\ B e. V ) ) |
| 10 | eqeq1 | |- ( x = A -> ( x = y <-> A = y ) ) |
|
| 11 | eqeq2 | |- ( y = B -> ( A = y <-> A = B ) ) |
|
| 12 | df-id | |- _I = { <. x , y >. | x = y } |
|
| 13 | 10 11 12 | brabg | |- ( ( A e. _V /\ B e. V ) -> ( A _I B <-> A = B ) ) |
| 14 | 4 9 13 | pm5.21nd | |- ( B e. V -> ( A _I B <-> A = B ) ) |