This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018) (Revised by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcnvep | |- dom `' _E = ( _V \ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm | |- dom `' _E = { x | E. y x `' _E y } |
|
| 2 | brcnvep | |- ( x e. _V -> ( x `' _E y <-> y e. x ) ) |
|
| 3 | 2 | elv | |- ( x `' _E y <-> y e. x ) |
| 4 | 3 | exbii | |- ( E. y x `' _E y <-> E. y y e. x ) |
| 5 | 4 | abbii | |- { x | E. y x `' _E y } = { x | E. y y e. x } |
| 6 | df-sn | |- { (/) } = { x | x = (/) } |
|
| 7 | 6 | difeq2i | |- ( _V \ { (/) } ) = ( _V \ { x | x = (/) } ) |
| 8 | notab | |- { x | -. x = (/) } = ( _V \ { x | x = (/) } ) |
|
| 9 | neq0 | |- ( -. x = (/) <-> E. y y e. x ) |
|
| 10 | 9 | abbii | |- { x | -. x = (/) } = { x | E. y y e. x } |
| 11 | 7 8 10 | 3eqtr2ri | |- { x | E. y y e. x } = ( _V \ { (/) } ) |
| 12 | 1 5 11 | 3eqtri | |- dom `' _E = ( _V \ { (/) } ) |