This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvopab.1 | |- F/ z ph |
|
| cbvopab.2 | |- F/ w ph |
||
| cbvopab.3 | |- F/ x ps |
||
| cbvopab.4 | |- F/ y ps |
||
| cbvopab.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
||
| Assertion | cbvopab | |- { <. x , y >. | ph } = { <. z , w >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvopab.1 | |- F/ z ph |
|
| 2 | cbvopab.2 | |- F/ w ph |
|
| 3 | cbvopab.3 | |- F/ x ps |
|
| 4 | cbvopab.4 | |- F/ y ps |
|
| 5 | cbvopab.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 6 | nfv | |- F/ z v = <. x , y >. |
|
| 7 | 6 1 | nfan | |- F/ z ( v = <. x , y >. /\ ph ) |
| 8 | nfv | |- F/ w v = <. x , y >. |
|
| 9 | 8 2 | nfan | |- F/ w ( v = <. x , y >. /\ ph ) |
| 10 | nfv | |- F/ x v = <. z , w >. |
|
| 11 | 10 3 | nfan | |- F/ x ( v = <. z , w >. /\ ps ) |
| 12 | nfv | |- F/ y v = <. z , w >. |
|
| 13 | 12 4 | nfan | |- F/ y ( v = <. z , w >. /\ ps ) |
| 14 | opeq12 | |- ( ( x = z /\ y = w ) -> <. x , y >. = <. z , w >. ) |
|
| 15 | 14 | eqeq2d | |- ( ( x = z /\ y = w ) -> ( v = <. x , y >. <-> v = <. z , w >. ) ) |
| 16 | 15 5 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. z , w >. /\ ps ) ) ) |
| 17 | 7 9 11 13 16 | cbvex2v | |- ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. z E. w ( v = <. z , w >. /\ ps ) ) |
| 18 | 17 | abbii | |- { v | E. x E. y ( v = <. x , y >. /\ ph ) } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 19 | df-opab | |- { <. x , y >. | ph } = { v | E. x E. y ( v = <. x , y >. /\ ph ) } |
|
| 20 | df-opab | |- { <. z , w >. | ps } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
|
| 21 | 18 19 20 | 3eqtr4i | |- { <. x , y >. | ph } = { <. z , w >. | ps } |