This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfoprab4.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
|
| Assertion | dfoprab4 | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab4.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
|
| 2 | xpss | |- ( A X. B ) C_ ( _V X. _V ) |
|
| 3 | 2 | sseli | |- ( w e. ( A X. B ) -> w e. ( _V X. _V ) ) |
| 4 | 3 | adantr | |- ( ( w e. ( A X. B ) /\ ph ) -> w e. ( _V X. _V ) ) |
| 5 | 4 | pm4.71ri | |- ( ( w e. ( A X. B ) /\ ph ) <-> ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) ) |
| 6 | 5 | opabbii | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) } |
| 7 | eleq1 | |- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
|
| 8 | opelxp | |- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
|
| 9 | 7 8 | bitrdi | |- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) |
| 10 | 9 1 | anbi12d | |- ( w = <. x , y >. -> ( ( w e. ( A X. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ ps ) ) ) |
| 11 | 10 | dfoprab3 | |- { <. w , z >. | ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |
| 12 | 6 11 | eqtri | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |