This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elementary proof of moeu in disguise, connecting an expression characterizing uniqueness ( df-mo ) to that of existential uniqueness ( eu6 ). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo . (Contributed by Wolf Lammen, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmoeu | |- ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
| 2 | pm2.21 | |- ( -. ph -> ( ph -> x = y ) ) |
|
| 3 | 2 | alimi | |- ( A. x -. ph -> A. x ( ph -> x = y ) ) |
| 4 | 1 3 | sylbir | |- ( -. E. x ph -> A. x ( ph -> x = y ) ) |
| 5 | 4 | 19.8ad | |- ( -. E. x ph -> E. y A. x ( ph -> x = y ) ) |
| 6 | biimp | |- ( ( ph <-> x = y ) -> ( ph -> x = y ) ) |
|
| 7 | 6 | alimi | |- ( A. x ( ph <-> x = y ) -> A. x ( ph -> x = y ) ) |
| 8 | 7 | eximi | |- ( E. y A. x ( ph <-> x = y ) -> E. y A. x ( ph -> x = y ) ) |
| 9 | 5 8 | ja | |- ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) -> E. y A. x ( ph -> x = y ) ) |
| 10 | nfia1 | |- F/ x ( A. x ( ph -> x = y ) -> A. x ( ph <-> x = y ) ) |
|
| 11 | id | |- ( ph -> ph ) |
|
| 12 | ax12v | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
| 13 | 12 | com12 | |- ( ph -> ( x = y -> A. x ( x = y -> ph ) ) ) |
| 14 | 11 13 | embantd | |- ( ph -> ( ( ph -> x = y ) -> A. x ( x = y -> ph ) ) ) |
| 15 | 14 | spsd | |- ( ph -> ( A. x ( ph -> x = y ) -> A. x ( x = y -> ph ) ) ) |
| 16 | 15 | ancld | |- ( ph -> ( A. x ( ph -> x = y ) -> ( A. x ( ph -> x = y ) /\ A. x ( x = y -> ph ) ) ) ) |
| 17 | albiim | |- ( A. x ( ph <-> x = y ) <-> ( A. x ( ph -> x = y ) /\ A. x ( x = y -> ph ) ) ) |
|
| 18 | 16 17 | imbitrrdi | |- ( ph -> ( A. x ( ph -> x = y ) -> A. x ( ph <-> x = y ) ) ) |
| 19 | 10 18 | exlimi | |- ( E. x ph -> ( A. x ( ph -> x = y ) -> A. x ( ph <-> x = y ) ) ) |
| 20 | 19 | eximdv | |- ( E. x ph -> ( E. y A. x ( ph -> x = y ) -> E. y A. x ( ph <-> x = y ) ) ) |
| 21 | 20 | com12 | |- ( E. y A. x ( ph -> x = y ) -> ( E. x ph -> E. y A. x ( ph <-> x = y ) ) ) |
| 22 | 9 21 | impbii | |- ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph -> x = y ) ) |