This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elementary proof of moeu in disguise, connecting an expression characterizing uniqueness ( df-mo ) to that of existential uniqueness ( eu6 ). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo . (Contributed by Wolf Lammen, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmoeu | ⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 2 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 4 | 1 3 | sylbir | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 5 | 4 | 19.8ad | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 6 | biimp | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 7 | 6 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 8 | 7 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 9 | 5 8 | ja | ⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 10 | nfia1 | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 11 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 12 | ax12v | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
| 13 | 12 | com12 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 14 | 11 13 | embantd | ⊢ ( 𝜑 → ( ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 15 | 14 | spsd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 16 | 15 | ancld | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
| 17 | albiim | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
| 18 | 16 17 | imbitrrdi | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 19 | 10 18 | exlimi | ⊢ ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 20 | 19 | eximdv | ⊢ ( ∃ 𝑥 𝜑 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 21 | 20 | com12 | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 22 | 9 21 | impbii | ⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |