This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elementary proof showing the reverse direction of dfmoeu . Here the characterizing expression of existential uniqueness ( eu6 ) is derived from that of uniqueness ( df-mo ). (Contributed by Wolf Lammen, 3-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeumo | |- ( ( E. x ph /\ E. y A. x ( ph -> x = y ) ) <-> E. y A. x ( ph <-> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev | |- E. x x = y |
|
| 2 | biimpr | |- ( ( ph <-> x = y ) -> ( x = y -> ph ) ) |
|
| 3 | 2 | aleximi | |- ( A. x ( ph <-> x = y ) -> ( E. x x = y -> E. x ph ) ) |
| 4 | 1 3 | mpi | |- ( A. x ( ph <-> x = y ) -> E. x ph ) |
| 5 | 4 | exlimiv | |- ( E. y A. x ( ph <-> x = y ) -> E. x ph ) |
| 6 | 5 | pm4.71ri | |- ( E. y A. x ( ph <-> x = y ) <-> ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) ) |
| 7 | abai | |- ( ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) <-> ( E. x ph /\ ( E. x ph -> E. y A. x ( ph <-> x = y ) ) ) ) |
|
| 8 | dfmoeu | |- ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph -> x = y ) ) |
|
| 9 | 8 | anbi2i | |- ( ( E. x ph /\ ( E. x ph -> E. y A. x ( ph <-> x = y ) ) ) <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) ) |
| 10 | 6 7 9 | 3bitrri | |- ( ( E. x ph /\ E. y A. x ( ph -> x = y ) ) <-> E. y A. x ( ph <-> x = y ) ) |