This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiop2 | |- Iop = ( _I |` ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iop | |- Iop = ( projh ` ~H ) |
|
| 2 | helch | |- ~H e. CH |
|
| 3 | 2 | pjfni | |- ( projh ` ~H ) Fn ~H |
| 4 | fnresi | |- ( _I |` ~H ) Fn ~H |
|
| 5 | pjch1 | |- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) |
|
| 6 | fvresi | |- ( x e. ~H -> ( ( _I |` ~H ) ` x ) = x ) |
|
| 7 | 5 6 | eqtr4d | |- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) ) |
| 8 | 7 | rgen | |- A. x e. ~H ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) |
| 9 | eqfnfv | |- ( ( ( projh ` ~H ) Fn ~H /\ ( _I |` ~H ) Fn ~H ) -> ( ( projh ` ~H ) = ( _I |` ~H ) <-> A. x e. ~H ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) ) ) |
|
| 10 | 8 9 | mpbiri | |- ( ( ( projh ` ~H ) Fn ~H /\ ( _I |` ~H ) Fn ~H ) -> ( projh ` ~H ) = ( _I |` ~H ) ) |
| 11 | 3 4 10 | mp2an | |- ( projh ` ~H ) = ( _I |` ~H ) |
| 12 | 1 11 | eqtri | |- Iop = ( _I |` ~H ) |