This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiop2 | ⊢ Iop = ( I ↾ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iop | ⊢ Iop = ( projℎ ‘ ℋ ) | |
| 2 | helch | ⊢ ℋ ∈ Cℋ | |
| 3 | 2 | pjfni | ⊢ ( projℎ ‘ ℋ ) Fn ℋ |
| 4 | fnresi | ⊢ ( I ↾ ℋ ) Fn ℋ | |
| 5 | pjch1 | ⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = 𝑥 ) | |
| 6 | fvresi | ⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) | |
| 7 | 5 6 | eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) |
| 9 | eqfnfv | ⊢ ( ( ( projℎ ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) ↔ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( ( ( projℎ ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) ) |
| 11 | 3 4 10 | mp2an | ⊢ ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) |
| 12 | 1 11 | eqtri | ⊢ Iop = ( I ↾ ℋ ) |