This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Hilbert space identity operator. See dfiop2 for alternate definition. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-iop | |- Iop = ( projh ` ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chio | |- Iop |
|
| 1 | cpjh | |- projh |
|
| 2 | chba | |- ~H |
|
| 3 | 2 1 | cfv | |- ( projh ` ~H ) |
| 4 | 0 3 | wceq | |- Iop = ( projh ` ~H ) |