This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfco2 | |- ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. B ) |
|
| 2 | reliun | |- ( Rel U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> A. x e. _V Rel ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 3 | relxp | |- Rel ( ( `' B " { x } ) X. ( A " { x } ) ) |
|
| 4 | 3 | a1i | |- ( x e. _V -> Rel ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
| 5 | 2 4 | mprgbir | |- Rel U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |
| 6 | opelco2g | |- ( ( y e. _V /\ z e. _V ) -> ( <. y , z >. e. ( A o. B ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) ) |
|
| 7 | 6 | el2v | |- ( <. y , z >. e. ( A o. B ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) |
| 8 | eliun | |- ( <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. _V <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 9 | rexv | |- ( E. x e. _V <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 10 | opelxp | |- ( <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( y e. ( `' B " { x } ) /\ z e. ( A " { x } ) ) ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | elimasn | |- ( y e. ( `' B " { x } ) <-> <. x , y >. e. `' B ) |
| 14 | 11 12 | opelcnv | |- ( <. x , y >. e. `' B <-> <. y , x >. e. B ) |
| 15 | 13 14 | bitri | |- ( y e. ( `' B " { x } ) <-> <. y , x >. e. B ) |
| 16 | vex | |- z e. _V |
|
| 17 | 11 16 | elimasn | |- ( z e. ( A " { x } ) <-> <. x , z >. e. A ) |
| 18 | 15 17 | anbi12i | |- ( ( y e. ( `' B " { x } ) /\ z e. ( A " { x } ) ) <-> ( <. y , x >. e. B /\ <. x , z >. e. A ) ) |
| 19 | 10 18 | bitri | |- ( <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( <. y , x >. e. B /\ <. x , z >. e. A ) ) |
| 20 | 19 | exbii | |- ( E. x <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) |
| 21 | 8 9 20 | 3bitrri | |- ( E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) <-> <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
| 22 | 7 21 | bitri | |- ( <. y , z >. e. ( A o. B ) <-> <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
| 23 | 1 5 22 | eqrelriiv | |- ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |