This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of dfco2 , where C can have any value between dom A i^i ran B and _V . (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfco2a | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfco2 | ⊢ ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | 2 | eliniseg | ⊢ ( 𝑥 ∈ V → ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 𝑧 𝐵 𝑥 ) ) |
| 4 | 3 | elv | ⊢ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 𝑧 𝐵 𝑥 ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 2 5 | brelrn | ⊢ ( 𝑧 𝐵 𝑥 → 𝑥 ∈ ran 𝐵 ) |
| 7 | 4 6 | sylbi | ⊢ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) → 𝑥 ∈ ran 𝐵 ) |
| 8 | vex | ⊢ 𝑤 ∈ V | |
| 9 | 5 8 | elimasn | ⊢ ( 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑤 〉 ∈ 𝐴 ) |
| 10 | 5 8 | opeldm | ⊢ ( 〈 𝑥 , 𝑤 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 11 | 9 10 | sylbi | ⊢ ( 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) → 𝑥 ∈ dom 𝐴 ) |
| 12 | 7 11 | anim12ci | ⊢ ( ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
| 14 | 13 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
| 15 | elxp | ⊢ ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) ) | |
| 16 | elin | ⊢ ( 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) | |
| 17 | 14 15 16 | 3imtr4i | ⊢ ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) → 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) ) |
| 18 | ssel | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) → 𝑥 ∈ 𝐶 ) ) | |
| 19 | 17 18 | syl5 | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) → 𝑥 ∈ 𝐶 ) ) |
| 20 | 19 | pm4.71rd | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) ) |
| 21 | 20 | exbidv | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( ∃ 𝑥 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) ) |
| 22 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 23 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) | |
| 24 | 21 22 23 | 3bitr4g | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) |
| 25 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 26 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 27 | 24 25 26 | 3bitr4g | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) |
| 28 | 27 | eqrdv | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) = ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
| 29 | 1 28 | eqtrid | ⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |