This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib ). The properties of the axiomatic definition of a determinant according to Weierstrass p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf . Multilineary means "linear for each row" - the additivity is shown by mdetrlin , the homogeneity by mdetrsca . Furthermore, it is shown that the determinant function is alternating (see mdetralt ) and normalized (see mdet1 ). Finally, uniqueness is shown by mdetuni . As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib . (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 10-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mdet | |- maDet = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmdat | |- maDet |
|
| 1 | vn | |- n |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | vm | |- m |
|
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- n |
| 7 | cmat | |- Mat |
|
| 8 | 3 | cv | |- r |
| 9 | 6 8 7 | co | |- ( n Mat r ) |
| 10 | 9 5 | cfv | |- ( Base ` ( n Mat r ) ) |
| 11 | cgsu | |- gsum |
|
| 12 | vp | |- p |
|
| 13 | csymg | |- SymGrp |
|
| 14 | 6 13 | cfv | |- ( SymGrp ` n ) |
| 15 | 14 5 | cfv | |- ( Base ` ( SymGrp ` n ) ) |
| 16 | czrh | |- ZRHom |
|
| 17 | 8 16 | cfv | |- ( ZRHom ` r ) |
| 18 | cpsgn | |- pmSgn |
|
| 19 | 6 18 | cfv | |- ( pmSgn ` n ) |
| 20 | 17 19 | ccom | |- ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) |
| 21 | 12 | cv | |- p |
| 22 | 21 20 | cfv | |- ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) |
| 23 | cmulr | |- .r |
|
| 24 | 8 23 | cfv | |- ( .r ` r ) |
| 25 | cmgp | |- mulGrp |
|
| 26 | 8 25 | cfv | |- ( mulGrp ` r ) |
| 27 | vx | |- x |
|
| 28 | 27 | cv | |- x |
| 29 | 28 21 | cfv | |- ( p ` x ) |
| 30 | 4 | cv | |- m |
| 31 | 29 28 30 | co | |- ( ( p ` x ) m x ) |
| 32 | 27 6 31 | cmpt | |- ( x e. n |-> ( ( p ` x ) m x ) ) |
| 33 | 26 32 11 | co | |- ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) |
| 34 | 22 33 24 | co | |- ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) |
| 35 | 12 15 34 | cmpt | |- ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) |
| 36 | 8 35 11 | co | |- ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) |
| 37 | 4 10 36 | cmpt | |- ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 38 | 1 3 2 2 37 | cmpo | |- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 39 | 0 38 | wceq | |- maDet = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |