This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib ). The properties of the axiomatic definition of a determinant according to Weierstrass p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf . Multilineary means "linear for each row" - the additivity is shown by mdetrlin , the homogeneity by mdetrsca . Furthermore, it is shown that the determinant function is alternating (see mdetralt ) and normalized (see mdet1 ). Finally, uniqueness is shown by mdetuni . As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib . (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 10-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mdet | ⊢ maDet = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmdat | ⊢ maDet | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | vm | ⊢ 𝑚 | |
| 5 | cbs | ⊢ Base | |
| 6 | 1 | cv | ⊢ 𝑛 |
| 7 | cmat | ⊢ Mat | |
| 8 | 3 | cv | ⊢ 𝑟 |
| 9 | 6 8 7 | co | ⊢ ( 𝑛 Mat 𝑟 ) |
| 10 | 9 5 | cfv | ⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 11 | cgsu | ⊢ Σg | |
| 12 | vp | ⊢ 𝑝 | |
| 13 | csymg | ⊢ SymGrp | |
| 14 | 6 13 | cfv | ⊢ ( SymGrp ‘ 𝑛 ) |
| 15 | 14 5 | cfv | ⊢ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) |
| 16 | czrh | ⊢ ℤRHom | |
| 17 | 8 16 | cfv | ⊢ ( ℤRHom ‘ 𝑟 ) |
| 18 | cpsgn | ⊢ pmSgn | |
| 19 | 6 18 | cfv | ⊢ ( pmSgn ‘ 𝑛 ) |
| 20 | 17 19 | ccom | ⊢ ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) |
| 21 | 12 | cv | ⊢ 𝑝 |
| 22 | 21 20 | cfv | ⊢ ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) |
| 23 | cmulr | ⊢ .r | |
| 24 | 8 23 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 25 | cmgp | ⊢ mulGrp | |
| 26 | 8 25 | cfv | ⊢ ( mulGrp ‘ 𝑟 ) |
| 27 | vx | ⊢ 𝑥 | |
| 28 | 27 | cv | ⊢ 𝑥 |
| 29 | 28 21 | cfv | ⊢ ( 𝑝 ‘ 𝑥 ) |
| 30 | 4 | cv | ⊢ 𝑚 |
| 31 | 29 28 30 | co | ⊢ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) |
| 32 | 27 6 31 | cmpt | ⊢ ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) |
| 33 | 26 32 11 | co | ⊢ ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) |
| 34 | 22 33 24 | co | ⊢ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) |
| 35 | 12 15 34 | cmpt | ⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) |
| 36 | 8 35 11 | co | ⊢ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) |
| 37 | 4 10 36 | cmpt | ⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 38 | 1 3 2 2 37 | cmpo | ⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 39 | 0 38 | wceq | ⊢ maDet = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |