This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element A of the monoid. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubmcom.b | |- B = ( Base ` G ) |
|
| cycsubmcom.t | |- .x. = ( .g ` G ) |
||
| cycsubmcom.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
||
| cycsubmcom.c | |- C = ran F |
||
| cycsubmcom.p | |- .+ = ( +g ` G ) |
||
| Assertion | cycsubmcom | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcom.b | |- B = ( Base ` G ) |
|
| 2 | cycsubmcom.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubmcom.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
|
| 4 | cycsubmcom.c | |- C = ran F |
|
| 5 | cycsubmcom.p | |- .+ = ( +g ` G ) |
|
| 6 | 1 2 3 4 | cycsubmel | |- ( c e. C <-> E. i e. NN0 c = ( i .x. A ) ) |
| 7 | 6 | biimpi | |- ( c e. C -> E. i e. NN0 c = ( i .x. A ) ) |
| 8 | 7 | adantl | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ c e. C ) -> E. i e. NN0 c = ( i .x. A ) ) |
| 9 | 8 | ralrimiva | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> A. c e. C E. i e. NN0 c = ( i .x. A ) ) |
| 10 | simplll | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ ( m e. NN0 /\ n e. NN0 ) ) -> G e. Mnd ) |
|
| 11 | simprl | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ ( m e. NN0 /\ n e. NN0 ) ) -> m e. NN0 ) |
|
| 12 | simprr | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ ( m e. NN0 /\ n e. NN0 ) ) -> n e. NN0 ) |
|
| 13 | simpllr | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ ( m e. NN0 /\ n e. NN0 ) ) -> A e. B ) |
|
| 14 | 1 2 5 | mulgnn0dir | |- ( ( G e. Mnd /\ ( m e. NN0 /\ n e. NN0 /\ A e. B ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
| 15 | 10 11 12 13 14 | syl13anc | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) /\ ( m e. NN0 /\ n e. NN0 ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
| 16 | 15 | ralrimivva | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> A. m e. NN0 A. n e. NN0 ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
| 17 | simprl | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> X e. C ) |
|
| 18 | simprr | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> Y e. C ) |
|
| 19 | nn0sscn | |- NN0 C_ CC |
|
| 20 | 19 | a1i | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> NN0 C_ CC ) |
| 21 | 9 16 17 18 20 | cyccom | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( X e. C /\ Y e. C ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |